En esta sesión, exploraremos cómo renombrar columnas de DataFrames en Pandas.
Descubre estrategias prácticas para mantener una nomenclatura clara y consistente, vital para la integridad de tus análisis. Aprenderás a mejorar la legibilidad de tus DataFrames con nombres de columnas descriptivos y coherentes para tener una narrativa computacional en tus proyectos.
Una nomenclatura clara y consistente puede transformar tu análisis de datos para que sea robusto, reproducible y colaborativo.
f = "../data/Cuernavaca_1dia_comas.csv"
cuerna = pd.read_csv(f,index_col= 0 ,parse_dates= True )
cuerna.head()
tiempo
2012-01-01 00:00:00
19.3
0.0
26
87415
0
0
0
2012-01-01 01:00:00
18.6
0.0
26
87602
0
0
0
2012-01-01 02:00:00
17.9
0.0
30
87788
0
0
0
2012-01-01 03:00:00
17.3
0.0
30
87554
0
0
0
2012-01-01 04:00:00
16.6
0.0
27
87321
0
0
0
columnas = cuerna.columns
columnas
Index(['To', 'Ws', 'Wd', 'P', 'Ig', 'Ib', 'Id'], dtype='object')
nombres = {
"Wd" :"wind_direction" ,
"Ws" :"WindSpeed"
}
cuerna.rename(columns= nombres)
tiempo
2012-01-01 00:00:00
19.3
0.0
26
87415
0
0
0
2012-01-01 01:00:00
18.6
0.0
26
87602
0
0
0
2012-01-01 02:00:00
17.9
0.0
30
87788
0
0
0
2012-01-01 03:00:00
17.3
0.0
30
87554
0
0
0
2012-01-01 04:00:00
16.6
0.0
27
87321
0
0
0
2012-01-01 05:00:00
15.9
0.0
26
87087
0
0
0
2012-01-01 06:00:00
17.0
0.0
27
87096
0
0
0
2012-01-01 07:00:00
18.0
0.0
34
87140
20
151
11
2012-01-01 08:00:00
19.0
0.0
61
87185
164
522
37
2012-01-01 09:00:00
20.0
0.0
95
87229
369
812
58
2012-01-01 10:00:00
20.0
1.0
108
87229
568
931
68
2012-01-01 11:00:00
20.0
2.1
160
87229
717
981
75
2012-01-01 12:00:00
21.0
1.8
135
87273
800
999
79
2012-01-01 13:00:00
22.0
1.5
160
87316
810
998
80
2012-01-01 14:00:00
21.7
1.3
164
87302
747
977
79
2012-01-01 15:00:00
21.3
1.2
176
87287
617
932
74
2012-01-01 16:00:00
21.0
1.0
140
87273
433
846
65
2012-01-01 17:00:00
19.0
0.0
198
87185
219
650
46
2012-01-01 18:00:00
17.1
0.0
221
87104
0
0
0
2012-01-01 19:00:00
17.0
0.0
269
87101
0
0
0
2012-01-01 20:00:00
17.3
0.0
50
87115
0
0
0
2012-01-01 21:00:00
17.0
0.2
85
87080
0
0
0
2012-01-01 22:00:00
16.6
0.5
89
87089
0
0
0
2012-01-01 23:00:00
15.9
0.8
93
87143
0
0
0
tiempo
2012-01-01 00:00:00
19.3
0.0
26
87415
0
0
0
2012-01-01 01:00:00
18.6
0.0
26
87602
0
0
0
2012-01-01 02:00:00
17.9
0.0
30
87788
0
0
0
2012-01-01 03:00:00
17.3
0.0
30
87554
0
0
0
2012-01-01 04:00:00
16.6
0.0
27
87321
0
0
0
2012-01-01 05:00:00
15.9
0.0
26
87087
0
0
0
2012-01-01 06:00:00
17.0
0.0
27
87096
0
0
0
2012-01-01 07:00:00
18.0
0.0
34
87140
20
151
11
2012-01-01 08:00:00
19.0
0.0
61
87185
164
522
37
2012-01-01 09:00:00
20.0
0.0
95
87229
369
812
58
2012-01-01 10:00:00
20.0
1.0
108
87229
568
931
68
2012-01-01 11:00:00
20.0
2.1
160
87229
717
981
75
2012-01-01 12:00:00
21.0
1.8
135
87273
800
999
79
2012-01-01 13:00:00
22.0
1.5
160
87316
810
998
80
2012-01-01 14:00:00
21.7
1.3
164
87302
747
977
79
2012-01-01 15:00:00
21.3
1.2
176
87287
617
932
74
2012-01-01 16:00:00
21.0
1.0
140
87273
433
846
65
2012-01-01 17:00:00
19.0
0.0
198
87185
219
650
46
2012-01-01 18:00:00
17.1
0.0
221
87104
0
0
0
2012-01-01 19:00:00
17.0
0.0
269
87101
0
0
0
2012-01-01 20:00:00
17.3
0.0
50
87115
0
0
0
2012-01-01 21:00:00
17.0
0.2
85
87080
0
0
0
2012-01-01 22:00:00
16.6
0.5
89
87089
0
0
0
2012-01-01 23:00:00
15.9
0.8
93
87143
0
0
0
cuerna.rename(columns= nombres,inplace= True )
Index(['To', 'WindSpeed', 'wind_direction', 'P', 'Ig', 'Ib', 'Id'], dtype='object')
columnas = cuerna.columns
wind = [columna for columna in columnas if "wind" in columna]
wind
wind = [columna for columna in columnas if "wind" in columna.lower()]
wind
['WindSpeed', 'wind_direction']
tiempo
2012-01-01 00:00:00
0.0
26
2012-01-01 01:00:00
0.0
26
2012-01-01 02:00:00
0.0
30
2012-01-01 03:00:00
0.0
30
2012-01-01 04:00:00
0.0
27