import pandas as pd
50 Ejercicio Final - Parte 2: Limpieza de datos
51 Limpieza de Text
- Tirar TMP5
- Tirar datos < 0
- Renombrar columnas a T1, T2…
- Resample cada 10 minutos con promedio
= '../data/termopares/exterior.csv'
f = pd.read_csv(f,index_col=0,parse_dates=True)
Text = Text.columns.to_list()
nombres 'TMP5')
nombres.remove(= Text[nombres]
Text = Text.columns.to_list()
nombres = [nombre.replace('MP','') for nombre in nombres]
nombres = nombres
Text.columns = Text[Text[nombres]>0]
Text = Text.resample('10Min').mean() Text
Text.plot()
52 Limpieza de Tcafe
- Renombrar columnas a T1, T2…
- Resample cada 10 minutos con promedio
= '../data/termopares/exterior.csv'
f = pd.read_csv(f,index_col=0,parse_dates=True)
Tcafe = Tcafe.columns.to_list()
nombres = [nombre.replace('MP','') for nombre in nombres]
nombres = nombres
Tcafe.columns = Tcafe.resample('10Min').mean()
Tcafe Tcafe
T1 | T10 | T11 | T12 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ts | ||||||||||||
2023-04-03 11:00:00 | 24.719444 | 24.891667 | 24.783333 | 24.278889 | 25.737778 | 24.4700 | 24.363889 | -451.577222 | 24.401667 | -8.96 | 24.702222 | 25.284444 |
2023-04-03 11:10:00 | 27.934000 | 28.483000 | 28.106000 | 27.599000 | 27.887000 | 27.7005 | 27.652000 | 27.673000 | 27.588500 | -8.96 | 27.659500 | 28.883500 |
2023-04-03 11:20:00 | 28.386000 | 28.808500 | 28.464500 | 27.942000 | 28.229500 | 28.0725 | 27.979500 | 27.937000 | 27.900500 | -8.96 | 27.999500 | 29.334000 |
2023-04-03 11:30:00 | 28.463500 | 28.917000 | 28.589500 | 28.130000 | 28.292500 | 28.1500 | 28.182000 | 28.060500 | 27.977500 | -8.96 | 28.185500 | 29.489000 |
2023-04-03 11:40:00 | 28.915000 | 29.428500 | 29.039000 | 28.549000 | 28.806000 | 28.6770 | 28.636000 | 28.547500 | 28.510000 | -8.96 | 28.604000 | 29.969500 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2023-04-04 13:10:00 | 25.503000 | 29.645500 | 29.395500 | 28.925000 | 26.424500 | 27.4210 | 28.431500 | 26.553500 | 25.655500 | -8.96 | 24.986500 | 30.062500 |
2023-04-04 13:20:00 | 29.087500 | 30.188000 | 29.814000 | 29.331500 | 29.149500 | 29.2525 | 29.444500 | 28.840500 | 28.540500 | -8.96 | 28.666000 | 30.730000 |
2023-04-04 13:30:00 | 30.240500 | 30.622000 | 30.341000 | 29.937500 | 30.082500 | 29.9245 | 29.940500 | 29.617000 | 29.727500 | -8.96 | 29.890500 | 31.201000 |
2023-04-04 13:40:00 | 29.118000 | 28.901500 | 28.542000 | 28.081500 | 28.900000 | 28.6615 | 28.605500 | 28.811000 | 28.790000 | -8.96 | 28.852000 | 29.551000 |
2023-04-04 13:50:00 | 30.364500 | 30.529000 | 30.310000 | 29.783000 | 30.191000 | 29.9700 | 30.002500 | 29.917500 | 30.008000 | -8.96 | 30.154000 | 31.199000 |
162 rows × 12 columns
53 Ambos conjuntos de 12 a 15 horas
= '2023-04-03 12:00'
f1 = '2023-04-03 17:00'
f2
'../data/termopares/Tcafe-12a17h.csv')
Tcafe.loc[f1:f2].to_csv('../data/termopares/Text-12a17h.csv') Text.loc[f1:f2].to_csv(
= '../data/termopares/Tcafe-12a17h.csv'
f = pd.read_csv(f,index_col=0,parse_dates=True)
cafe cafe.plot()
= '../data/termopares/Text-12a17h.csv'
f = pd.read_csv(f,index_col=0,parse_dates=True)
ext ext.plot()