En está sesión , nos enfocaremos en técnicas que van desde la selección de columnas hasta la manipulación de filas con .loc y .iloc, herramientas que te empoderarán para manejar tus datos temporales en Pandas con eficacia.
Acceder a las columnas, ya sea utilizando corchetes, la notación de punto te cambiará tu flujo de trabajo. Estas estrategias no solo facilitan la selección de datos relevantes sino que también optimizan el proceso de análisis temporal.
f = "../data/Cuernavaca_1dia_comas.csv"
cuerna = pd.read_csv(f,index_col= 0 ,parse_dates= True )
cuerna.head()
tiempo
2012-01-01 00:00:00
19.3
0.0
26
87415
0
0
0
2012-01-01 01:00:00
18.6
0.0
26
87602
0
0
0
2012-01-01 02:00:00
17.9
0.0
30
87788
0
0
0
2012-01-01 03:00:00
17.3
0.0
30
87554
0
0
0
2012-01-01 04:00:00
16.6
0.0
27
87321
0
0
0
tiempo
2012-01-01 00:00:00 19.3
2012-01-01 01:00:00 18.6
2012-01-01 02:00:00 17.9
2012-01-01 03:00:00 17.3
2012-01-01 04:00:00 16.6
2012-01-01 05:00:00 15.9
2012-01-01 06:00:00 17.0
2012-01-01 07:00:00 18.0
2012-01-01 08:00:00 19.0
2012-01-01 09:00:00 20.0
2012-01-01 10:00:00 20.0
2012-01-01 11:00:00 20.0
2012-01-01 12:00:00 21.0
2012-01-01 13:00:00 22.0
2012-01-01 14:00:00 21.7
2012-01-01 15:00:00 21.3
2012-01-01 16:00:00 21.0
2012-01-01 17:00:00 19.0
2012-01-01 18:00:00 17.1
2012-01-01 19:00:00 17.0
2012-01-01 20:00:00 17.3
2012-01-01 21:00:00 17.0
2012-01-01 22:00:00 16.6
2012-01-01 23:00:00 15.9
Name: To, dtype: float64
cuerna.To #Por esto no conviene usar espacios o caracteres extraños
tiempo
2012-01-01 00:00:00 19.3
2012-01-01 01:00:00 18.6
2012-01-01 02:00:00 17.9
2012-01-01 03:00:00 17.3
2012-01-01 04:00:00 16.6
2012-01-01 05:00:00 15.9
2012-01-01 06:00:00 17.0
2012-01-01 07:00:00 18.0
2012-01-01 08:00:00 19.0
2012-01-01 09:00:00 20.0
2012-01-01 10:00:00 20.0
2012-01-01 11:00:00 20.0
2012-01-01 12:00:00 21.0
2012-01-01 13:00:00 22.0
2012-01-01 14:00:00 21.7
2012-01-01 15:00:00 21.3
2012-01-01 16:00:00 21.0
2012-01-01 17:00:00 19.0
2012-01-01 18:00:00 17.1
2012-01-01 19:00:00 17.0
2012-01-01 20:00:00 17.3
2012-01-01 21:00:00 17.0
2012-01-01 22:00:00 16.6
2012-01-01 23:00:00 15.9
Name: To, dtype: float64
tiempo
2012-01-01 00:00:00
0.0
19.3
2012-01-01 01:00:00
0.0
18.6
2012-01-01 02:00:00
0.0
17.9
2012-01-01 03:00:00
0.0
17.3
2012-01-01 04:00:00
0.0
16.6
2012-01-01 05:00:00
0.0
15.9
2012-01-01 06:00:00
0.0
17.0
2012-01-01 07:00:00
0.0
18.0
2012-01-01 08:00:00
0.0
19.0
2012-01-01 09:00:00
0.0
20.0
2012-01-01 10:00:00
1.0
20.0
2012-01-01 11:00:00
2.1
20.0
2012-01-01 12:00:00
1.8
21.0
2012-01-01 13:00:00
1.5
22.0
2012-01-01 14:00:00
1.3
21.7
2012-01-01 15:00:00
1.2
21.3
2012-01-01 16:00:00
1.0
21.0
2012-01-01 17:00:00
0.0
19.0
2012-01-01 18:00:00
0.0
17.1
2012-01-01 19:00:00
0.0
17.0
2012-01-01 20:00:00
0.0
17.3
2012-01-01 21:00:00
0.2
17.0
2012-01-01 22:00:00
0.5
16.6
2012-01-01 23:00:00
0.8
15.9
To 19.3
Ws 0.0
Wd 26.0
P 87415.0
Ig 0.0
Ib 0.0
Id 0.0
Name: 2012-01-01 00:00:00, dtype: float64
tiempo
2012-01-01 00:00:00
19.3
0.0
26
87415
0
0
0
2012-01-01 01:00:00
18.6
0.0
26
87602
0
0
0
2012-01-01 02:00:00
17.9
0.0
30
87788
0
0
0
2012-01-01 03:00:00
17.3
0.0
30
87554
0
0
0
2012-01-01 04:00:00
16.6
0.0
27
87321
0
0
0
2012-01-01 05:00:00
15.9
0.0
26
87087
0
0
0
2012-01-01 06:00:00
17.0
0.0
27
87096
0
0
0
2012-01-01 07:00:00
18.0
0.0
34
87140
20
151
11
2012-01-01 08:00:00
19.0
0.0
61
87185
164
522
37
2012-01-01 09:00:00
20.0
0.0
95
87229
369
812
58
To 15.9
Ws 0.8
Wd 93.0
P 87143.0
Ig 0.0
Ib 0.0
Id 0.0
Name: 2012-01-01 23:00:00, dtype: float64
tiempo
2012-01-01 23:00:00
15.9
0.8
93
87143
0
0
0
2012-01-01 21:00:00
17.0
0.2
85
87080
0
0
0
2012-01-01 19:00:00
17.0
0.0
269
87101
0
0
0
2012-01-01 17:00:00
19.0
0.0
198
87185
219
650
46
2012-01-01 15:00:00
21.3
1.2
176
87287
617
932
74