import pandas as pd
import matplotlib.pyplot as plt
from dateutil.parser import parse
51 Ejercicio Final - Parte 3: Preparación y visualización de datos
Bienvenidos a este video dedicado a simplificar el proceso de visualización de datos. En esta sesión, nos centraremos únicamente en cargar los datos, prepararlos para la graficación y finalmente, graficarlos. Este enfoque directo nos permitirá obtener resultados rápidamente y sin complicaciones. Sin más preámbulos, ¡empecemos con el proceso de carga y graficación de datos!
= '../data/termopares/Tcafe-12a17h.csv'
f = pd.read_csv(f,index_col=0,parse_dates=True)
cafe = '../data/termopares/Text-12a17h.csv'
f = pd.read_csv(f,index_col=0,parse_dates=True) ext
= pd.concat([cafe,ext],axis=1,keys=['cafe','ext'])
Ti Ti
cafe | ... | ext | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T10 | T11 | T12 | T2 | T3 | T4 | T5 | T6 | T7 | ... | T10 | T11 | T12 | T2 | T3 | T4 | T6 | T7 | T8 | T9 | |
ts | |||||||||||||||||||||
2023-04-03 12:00:00 | 29.6670 | 30.0330 | 29.7210 | 29.3180 | 29.5245 | 29.3590 | 29.3670 | 29.1675 | 29.1310 | -8.96 | ... | 30.0330 | 29.7210 | 29.3180 | 29.5245 | 29.3590 | 29.3670 | 29.1310 | NaN | 29.2860 | 30.5740 |
2023-04-03 12:10:00 | 29.6360 | 29.9245 | 29.6590 | 29.3025 | 29.4470 | 29.3435 | 29.3360 | 29.0125 | 28.9915 | -8.96 | ... | 29.9245 | 29.6590 | 29.3025 | 29.4470 | 29.3435 | 29.3360 | 28.9915 | NaN | 29.1000 | 30.5120 |
2023-04-03 12:20:00 | 30.5040 | 30.9165 | 30.6820 | 30.2175 | 30.3770 | 30.1885 | 30.2350 | 29.9965 | 29.9625 | -8.96 | ... | 30.9165 | 30.6820 | 30.2175 | 30.3770 | 30.1885 | 30.2350 | 29.9625 | NaN | 30.1230 | 31.4815 |
2023-04-03 12:30:00 | 30.5970 | 30.9320 | 30.6820 | 30.2325 | 30.5010 | 30.2990 | 30.2970 | 30.0750 | 30.0710 | -8.96 | ... | 30.9320 | 30.6820 | 30.2325 | 30.5010 | 30.2990 | 30.2970 | 30.0710 | NaN | 30.1850 | 31.5605 |
2023-04-03 12:40:00 | 31.3605 | 31.6795 | 31.4620 | 30.9710 | 31.1250 | 30.9655 | 30.9635 | 30.7895 | 30.8025 | -8.96 | ... | 31.6795 | 31.4620 | 30.9710 | 31.1250 | 30.9655 | 30.9635 | 30.8025 | NaN | 30.9755 | 32.2890 |
2023-04-03 12:50:00 | 30.9240 | 31.2890 | 31.0870 | 30.6105 | 30.8280 | 30.6400 | 30.6690 | 30.3090 | 30.3655 | -8.96 | ... | 31.2890 | 31.0870 | 30.6105 | 30.8280 | 30.6400 | 30.6690 | 30.3655 | NaN | 30.5105 | 31.8705 |
2023-04-03 13:00:00 | 30.8145 | 31.1495 | 30.9155 | 30.5160 | 30.6720 | 30.4850 | 30.5450 | 30.2935 | 30.3345 | -8.96 | ... | 31.1495 | 30.9155 | 30.5160 | 30.6720 | 30.4850 | 30.5450 | 30.3345 | NaN | 30.4640 | 31.7930 |
2023-04-03 13:10:00 | 32.0325 | 32.5535 | 32.3195 | 31.8590 | 31.9060 | 31.7250 | 31.7860 | 31.5510 | 31.5210 | -8.96 | ... | 32.5535 | 32.3195 | 31.8590 | 31.9060 | 31.7250 | 31.7860 | 31.5210 | NaN | 31.7195 | 33.0795 |
2023-04-03 13:20:00 | 32.2035 | 32.6310 | 32.3350 | 31.9210 | 32.0765 | 31.9110 | 31.8345 | 31.7565 | 31.7065 | -8.96 | ... | 32.6310 | 32.3350 | 31.9210 | 32.0765 | 31.9110 | 31.8345 | 31.7065 | NaN | 31.7970 | 33.2035 |
2023-04-03 13:30:00 | 32.2810 | 32.7400 | 32.4280 | 32.0295 | 32.1385 | 31.9420 | 31.9890 | 31.7085 | 31.7705 | -8.96 | ... | 32.7400 | 32.4280 | 32.0295 | 32.1385 | 31.9420 | 31.9890 | 31.7705 | NaN | 31.9365 | 33.2965 |
2023-04-03 13:40:00 | 32.0795 | 32.5230 | 32.2885 | 31.9660 | 32.0455 | 31.8335 | 31.8160 | 31.5040 | 31.5070 | -8.96 | ... | 32.5230 | 32.2885 | 31.9660 | 32.0455 | 31.8335 | 31.8160 | 31.5070 | NaN | 31.7040 | 33.0950 |
2023-04-03 13:50:00 | 32.8235 | 33.3135 | 33.0170 | 32.5770 | 32.7585 | 32.5775 | 32.5850 | 32.3030 | 32.2820 | -8.96 | ... | 33.3135 | 33.0170 | 32.5770 | 32.7585 | 32.5775 | 32.5850 | 32.2820 | NaN | 32.5100 | 33.8700 |
2023-04-03 14:00:00 | 33.2590 | 33.6855 | 33.5595 | 33.0745 | 33.1460 | 32.9665 | 33.0350 | 32.6750 | 32.6890 | -8.96 | ... | 33.6855 | 33.5595 | 33.0745 | 33.1460 | 32.9665 | 33.0350 | 32.6890 | NaN | 32.8200 | 34.3395 |
2023-04-03 14:10:00 | 33.7600 | 34.1970 | 34.0865 | 33.5270 | 33.6780 | 33.4525 | 33.5000 | 33.1090 | 33.1905 | -8.96 | ... | 34.1970 | 34.0865 | 33.5270 | 33.6780 | 33.4525 | 33.5000 | 33.1905 | NaN | 33.3315 | 34.8250 |
2023-04-03 14:20:00 | 33.5070 | 33.8405 | 33.6215 | 33.2450 | 33.3480 | 33.1995 | 33.2365 | 32.8145 | 32.8950 | -8.96 | ... | 33.8405 | 33.6215 | 33.2450 | 33.3480 | 33.1995 | 33.2365 | 32.8950 | NaN | 32.9905 | 34.4980 |
2023-04-03 14:30:00 | 34.4920 | 34.9255 | 34.7065 | 34.1220 | 34.4270 | 34.1840 | 34.1510 | 33.9350 | 33.9520 | -8.96 | ... | 34.9255 | 34.7065 | 34.1220 | 34.4270 | 34.1840 | 34.1510 | 33.9520 | NaN | 34.1065 | 35.4610 |
2023-04-03 14:40:00 | 34.4145 | 34.7860 | 34.5825 | 34.1530 | 34.2565 | 34.0290 | 34.1045 | 33.7455 | 33.8265 | -8.96 | ... | 34.7860 | 34.5825 | 34.1530 | 34.2565 | 34.0290 | 34.1045 | 33.8265 | NaN | 33.9360 | 35.4300 |
2023-04-03 14:50:00 | 34.4920 | 35.0650 | 34.9090 | 34.4010 | 34.4580 | 34.2615 | 34.2905 | 33.9040 | 34.0435 | -8.96 | ... | 35.0650 | 34.9090 | 34.4010 | 34.4580 | 34.2615 | 34.2905 | 34.0435 | NaN | 34.0910 | 35.6625 |
2023-04-03 15:00:00 | 35.0345 | 35.5610 | 35.4265 | 34.9660 | 34.9075 | 34.7575 | 34.7865 | 34.3435 | 34.4540 | -8.96 | ... | 35.5610 | 35.4265 | 34.9660 | 34.9075 | 34.7575 | 34.7865 | 34.4540 | NaN | 34.6180 | 36.1430 |
2023-04-03 15:10:00 | 35.1430 | 35.5300 | 35.2735 | 34.9360 | 35.0470 | 34.8040 | 34.8950 | 34.6070 | 34.6735 | -8.96 | ... | 35.5300 | 35.2735 | 34.9360 | 35.0470 | 34.8040 | 34.8950 | 34.6735 | NaN | 34.7575 | 36.2360 |
2023-04-03 15:20:00 | 34.9415 | 35.2975 | 35.1140 | 34.6805 | 34.8455 | 34.6955 | 34.6470 | 34.4055 | 34.5340 | -8.96 | ... | 35.2975 | 35.1140 | 34.6805 | 34.8455 | 34.6955 | 34.6470 | 34.5340 | NaN | 34.5560 | 35.9570 |
2023-04-03 15:30:00 | 35.4375 | 35.7160 | 35.5380 | 35.0920 | 35.3105 | 35.1295 | 35.1740 | 34.8550 | 34.9215 | -8.96 | ... | 35.7160 | 35.5380 | 35.0920 | 35.3105 | 35.1295 | 35.1740 | 34.9215 | NaN | 35.0520 | 36.4065 |
2023-04-03 15:40:00 | 35.5775 | 36.2120 | 36.0185 | 35.6355 | 35.5895 | 35.3775 | 35.4840 | 34.9325 | 34.9990 | -8.96 | ... | 36.2120 | 36.0185 | 35.6355 | 35.5895 | 35.3775 | 35.4840 | 34.9990 | NaN | 35.2535 | 36.8095 |
2023-04-03 15:50:00 | 35.9095 | 36.3515 | 36.0960 | 35.7905 | 35.8375 | 35.6410 | 35.6415 | 35.2580 | 35.3555 | -8.96 | ... | 36.3515 | 36.0960 | 35.7905 | 35.8375 | 35.6410 | 35.6415 | 35.3555 | NaN | 35.5015 | 36.9180 |
2023-04-03 16:00:00 | 35.9715 | 36.2895 | 36.0805 | 35.7595 | 35.8220 | 35.6410 | 35.6730 | 35.3365 | 35.4655 | -8.96 | ... | 36.2895 | 36.0805 | 35.7595 | 35.8220 | 35.6410 | 35.6730 | 35.4655 | NaN | 35.5945 | 36.9180 |
2023-04-03 16:10:00 | 36.4240 | 36.8320 | 36.6230 | 36.3375 | 36.3200 | 36.0905 | 36.1745 | 35.6815 | 35.8425 | -8.96 | ... | 36.8320 | 36.6230 | 36.3375 | 36.3200 | 36.0905 | 36.1745 | 35.8425 | NaN | 35.9665 | 37.3990 |
2023-04-03 16:20:00 | 36.3775 | 36.8165 | 36.7005 | 36.3375 | 36.3665 | 36.1370 | 36.2065 | 35.6320 | 35.8260 | -8.96 | ... | 36.8165 | 36.7005 | 36.3375 | 36.3665 | 36.1370 | 36.2065 | 35.8260 | NaN | 35.9820 | 37.3995 |
2023-04-03 16:30:00 | 36.5480 | 36.9405 | 36.9330 | 36.5570 | 36.4600 | 36.2765 | 36.3930 | 35.7110 | 35.9515 | -8.96 | ... | 36.9405 | 36.9330 | 36.5570 | 36.4600 | 36.2765 | 36.3930 | 35.9515 | NaN | 36.0120 | 37.6500 |
2023-04-03 16:40:00 | 36.0210 | 36.1810 | 36.1115 | 35.8370 | 35.8840 | 35.6410 | 35.7180 | 35.2270 | 35.4795 | -8.96 | ... | 36.1810 | 36.1115 | 35.8370 | 35.8840 | 35.6410 | 35.7180 | 35.4795 | NaN | 35.6255 | 36.9180 |
2023-04-03 16:50:00 | 37.1835 | 37.6845 | 38.0830 | 38.3500 | 37.1945 | 36.9330 | 37.0900 | 36.4765 | 36.7915 | -8.96 | ... | 37.6845 | 38.0830 | 38.3500 | 37.1945 | 36.9330 | 37.0900 | 36.7915 | NaN | 36.8110 | 38.2425 |
2023-04-03 17:00:00 | 37.6175 | 38.4130 | 38.5170 | 38.5530 | 37.5835 | 37.3865 | 37.5400 | 36.6940 | 36.9470 | -8.96 | ... | 38.4130 | 38.5170 | 38.5530 | 37.5835 | 37.3865 | 37.5400 | 36.9470 | NaN | 37.1190 | 38.6640 |
31 rows × 23 columns
'cafe'].mean() Ti[
T1 33.775290
T10 34.193855
T11 34.018613
T12 33.641129
T2 33.673581
T3 33.479774
T4 33.521403
T5 33.155145
T6 33.234935
T7 -8.960000
T8 33.368887
T9 34.790387
dtype: float64
'cafe'].mean(axis=1) Ti[
ts
2023-04-03 12:00:00 26.349000
2023-04-03 12:10:00 26.275375
2023-04-03 12:20:00 27.143667
2023-04-03 12:30:00 27.206000
2023-04-03 12:40:00 27.868625
2023-04-03 12:50:00 27.511917
2023-04-03 13:00:00 27.418542
2023-04-03 13:10:00 28.591042
2023-04-03 13:20:00 28.701333
2023-04-03 13:30:00 28.775000
2023-04-03 13:40:00 28.616833
2023-04-03 13:50:00 29.304750
2023-04-03 14:00:00 29.690792
2023-04-03 14:10:00 30.141417
2023-04-03 14:20:00 29.853000
2023-04-03 14:30:00 30.791875
2023-04-03 14:40:00 30.692000
2023-04-03 14:50:00 30.884833
2023-04-03 15:00:00 31.336500
2023-04-03 15:10:00 31.411875
2023-04-03 15:20:00 31.226167
2023-04-03 15:30:00 31.639375
2023-04-03 15:40:00 31.910750
2023-04-03 15:50:00 32.111708
2023-04-03 16:00:00 32.132625
2023-04-03 16:10:00 32.560917
2023-04-03 16:20:00 32.568458
2023-04-03 16:30:00 32.706042
2023-04-03 16:40:00 32.140292
2023-04-03 16:50:00 33.490000
2023-04-03 17:00:00 33.839542
dtype: float64
= plt.subplots(figsize=(12,4))
fig, ax
'cafe'].mean(axis=1),'r.',label='cafe')
ax.plot(Ti['ext'].mean(axis=1),'k.',label='ext')
ax.plot( Ti[
20,40)
ax.set_ylim('Fecha')
ax.set_xlabel('Temperatura [oC]')
ax.set_ylabel( ax.legend()