30  Actualiza dataframes

import pandas as pd
import plotly.graph_objects as go
import numpy as np
f = '../../data/Temixco_2018_10Min.parquet'
tmx = pd.read_parquet(f)
start_date = '2018-03-01'
end_date = '2018-03-14'  # Esto cubre dos semanas completas

tmx.loc[start_date:end_date, 'To'] = np.nan

tmx.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 52560 entries, 2018-01-01 00:00:00 to 2018-12-31 23:50:00
Data columns (total 7 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   Ib      52423 non-null  float64
 1   Ig      52423 non-null  float64
 2   To      50544 non-null  float64
 3   RH      52560 non-null  float64
 4   WS      52560 non-null  float64
 5   WD      52560 non-null  float64
 6   P       52560 non-null  float64
dtypes: float64(7)
memory usage: 5.2 MB
f = '../../data/update.parquet'
nuevo = pd.read_parquet(f)
nuevo.index
DatetimeIndex(['2018-03-01 00:00:00', '2018-03-01 00:10:00',
               '2018-03-01 00:20:00', '2018-03-01 00:30:00',
               '2018-03-01 00:40:00', '2018-03-01 00:50:00',
               '2018-03-01 01:00:00', '2018-03-01 01:10:00',
               '2018-03-01 01:20:00', '2018-03-01 01:30:00',
               ...
               '2018-03-31 22:20:00', '2018-03-31 22:30:00',
               '2018-03-31 22:40:00', '2018-03-31 22:50:00',
               '2018-03-31 23:00:00', '2018-03-31 23:10:00',
               '2018-03-31 23:20:00', '2018-03-31 23:30:00',
               '2018-03-31 23:40:00', '2018-03-31 23:50:00'],
              dtype='datetime64[ns]', name='time', length=4464, freq=None)
tmx
Ib Ig To RH WS WD P
time
2018-01-01 00:00:00 NaN NaN 18.70 36.34 1.422 316.0 87864.11
2018-01-01 00:10:00 0.002 0.0 18.95 35.29 1.008 283.7 87876.37
2018-01-01 00:20:00 0.170 0.0 18.94 35.43 1.565 326.0 87888.64
2018-01-01 00:30:00 0.371 0.0 18.77 35.89 2.175 354.5 87887.21
2018-01-01 00:40:00 0.305 0.0 18.81 36.34 1.902 348.0 87886.91
... ... ... ... ... ... ... ...
2018-12-31 23:10:00 0.125 0.0 18.51 47.29 1.715 332.2 87484.32
2018-12-31 23:20:00 0.000 0.0 18.26 48.02 1.703 320.5 87470.70
2018-12-31 23:30:00 0.044 0.0 18.39 46.84 2.887 335.7 87455.03
2018-12-31 23:40:00 0.170 0.0 17.99 47.85 1.528 358.8 87470.02
2018-12-31 23:50:00 0.003 0.0 17.75 49.65 0.598 322.3 87467.29

52560 rows × 7 columns

fig = go.Figure()

fig.add_trace(
    go.Scatter(x=tmx.index, y=tmx.To,name='To')
)


fig.show()
fig = go.Figure()

fig.add_trace(
    go.Scatter(x=tmx.index, y=tmx.To,name='To')
)
fig.add_trace(
    go.Scatter(x=nuevo.index, y=nuevo.To,name='To_n')
)


fig.show()
tmx2 = tmx.copy()
tmx2.update({'To':nuevo.To})
fig = go.Figure()

fig.add_trace(
    go.Scatter(x=tmx.index, y=tmx.To,name='To_viejo')
)
fig.add_trace(
    go.Scatter(x=tmx2.index, y=tmx2.To,name='To_nuevo')
)

fig.add_trace(
    go.Scatter(x=nuevo.index, y=nuevo.To,name='To_reemplazado')
)


fig.show()