Referencias

Allen, John. 2007. “Photoplethysmography and Its Application in Clinical Physiological Measurement.” Physiological Measurement 28 (3): R1. https://doi.org/10.1088/0967-3334/28/3/R01.
American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009. ASHRAE Handbook—Fundamentals (SI Edition). Atlanta, GA: ASHRAE.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 2017. Thermal Environmental Conditions for Human Occupancy. ASHRAE Standard 55-2017. American Society of Heating, Refrigerating; Air-Conditioning Engineers, Inc.
Bogatu, Dragos Ioan, Jun Shinoda, José Joaquín Aguilera, Bjarne W. Olesen, Futa Watanabe, Yosuke Kaneko, and Ongun B. Kazanci. 2023. “Human Physiology for Personal Thermal Comfort-Based HVAC Control – a Review.” Building and Environment 240 (July): 110418. https://doi.org/10.1016/J.BUILDENV.2023.110418.
Calixto Aguirre, Verónica Ivette. 2021. “Thermal Comfort Studies.” Master’s thesis, Temixco, Morelos, México: Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ingeniería, Instituto de Energías Renovables. http://132.248.9.195/ptd2021/septiembre/0814603/Index.html.
Cen, Chao, Siyu Cheng, and Nyuk Hien Wong. 2023. “Effect of Elevated Air Temperature and Air Velocity on Thermal Comfort and Cognitive Performance in the Tropics.” Building and Environment 234: 110203–3. https://doi.org/10.1016/j.buildenv.2023.110203.
Chaudhuri, Tanaya, Yeng Chai Soh, Hua Li, and Lihua Xie. 2020. “Machine Learning Driven Personal Comfort Prediction by Wearable Sensing of Pulse Rate and Skin Temperature.” Building and Environment 170 (March): 106615. https://doi.org/10.1016/j.buildenv.2019.106615.
Chaudhuri, Tanaya, Deqing Zhai, Yeng Chai Soh, Hua Li, and Lihua Xie. 2018. “Random Forest Based Thermal Comfort Prediction from Gender-Specific Physiological Parameters Using Wearable Sensing Technology.” Energy and Buildings 166 (May): 391–406. https://doi.org/10.1016/J.ENBUILD.2018.02.035.
Cho, Seonghun, Hong Jae Nam, Chuanqi Shi, Choong Yeon Kim, Sang-Hyuk Byun, Karen-Christian Agno, Byung Chul Lee, Jianliang Xiao, Joo Yong Sim, and Jae-Woong Jeong. 2023. “Wireless, AI-Enabled Wearable Thermal Comfort Sensor for Energy-Efficient, Human-in-the-Loop Control of Indoor Temperature.” Biosensors and Bioelectronics 223 (March): 115018. https://doi.org/10.1016/j.bios.2022.115018.
Choi, Joon Ho, and Dongwoo Yeom. 2017. “Study of Data-Driven Thermal Sensation Prediction Model as a Function of Local Body Skin Temperatures in a Built Environment.” Building and Environment 121 (August): 130–47. https://doi.org/10.1016/J.BUILDENV.2017.05.004.
D. Morillón, T. I. Castañeda, F. R. Saldaña, and M. U. Miranda. 2002. “Atlas Bioclimático de La República Mexicana.” Energías Renovables y Medio Ambiente 10: 57–62.
Departamento de Defensa de EE.UU. 2009. Desarrollo de Tecnología Abierta: Lecciones aprendidas y mejores prácticas para software militar.” https://dodcio.defense.gov/Portals/0/Documents/FOSS/OTD-lessons-learned-military-signed.pdf.
Enescu, Diana. 2017. “A Review of Thermal Comfort Models and Indicators for Indoor Environments.” Renewable and Sustainable Energy Reviews 79 (November): 1353–79. https://doi.org/10.1016/J.RSER.2017.05.175.
Fanger, P. O. 1970. Thermal Comfort: Analysis and Applications in Environmental Engineering. Copenhagen: Danish Technical Press. https://archive.org/details/thermalcomfortan0000fang.
Fanger, P. O., and Jørn Toftum. 2002. “Extension of the PMV Model to Non-Air-Conditioned Buildings in Warm Climates.” Energy and Buildings 34 (6): 533–36. https://doi.org/10.1016/S0378-7788(02)00003-8.
Feng, Yanxiao, Julian Wang, Nan Wang, and Chenshun Chen. 2023. “Alert-Based Wearable Sensing System for Individualized Thermal Preference Prediction.” Building and Environment 232 (March): 110047. https://doi.org/10.1016/J.BUILDENV.2023.110047.
Fondo Nacional de la Vivienda para los Trabajadores (Infonavit), Instituto del. 2020. “Anexo 1. Listado de Regiones Bioclimáticas.” https://portalmx.infonavit.org.mx/wps/wcm/connect/005dcf74-d918-41aa-acfa-927e7b33d98a/12.+Anexo\%2B1.\%2BListado\%2Bde\%2Bregiones\%2Bbioclim\%C3\%A1ticas.pdf?MOD=AJPERES&CONVERT_TO=url&CACHEID=ROOTWORKSPACE-005dcf74-d918-41aa-acfa-927e7b33d98a-mmCFC0.
Garces, Hugo O., Eduardo Morales, Rodrigo Gomez, Hans Cabrera, and Eduardo Espinosa. 2021. “Design and Calibration of Low Cost Sensor Node for Thermal Comfort Estimation.” 2021 29th Mediterranean Conference on Control and Automation, MED 2021, June, 1215–21. https://doi.org/10.1109/MED51440.2021.9480306.
Gnecco, Veronica Martins, Ilaria Pigliautile, and Anna Laura Pisello. 2023. “Long-Term Thermal Comfort Monitoring via Wearable Sensing Techniques: Correlation Between Environmental Metrics and Subjective Perception.” Sensors 23 (January): 576. https://doi.org/10.3390/s23020576.
Gómez-Azpetia, G., E. López Gómez, and M. Peña. 2006. “Adaptación Del ı́Ndice Humidex Para El Clima de La Ciudad de Colima, méxico, de Acuerdo Con El Enfoque Adaptativo.” Anuario VIII: 77–92.
He, Weilin, Cheng Fan, Zebin Wu, and Qiaoqiao Yong. 2025. “An IMU Dataset for Human Thermal Comfort Activities Identification: Experimental Designs and Applications.” Energy and Built Environment 6: 66–79. https://doi.org/10.1016/j.enbenv.2023.09.001.
Infonavit. 2024. “Listado de Regiones Bioclimáticas.” https://portalmx.infonavit.org.mx/wps/wcm/connect/005dcf74-d918-41aa-acfa-927e7b33d98a/12.%2BAnexo%252B1.%252BListado%252Bde%252Bregiones%252Bbioclim%25C3%25A1ticas.pdf?MOD=AJPERES&CONVERT_TO=url&CACHEID=ROOTWORKSPACE-005dcf74-d918-41aa-acfa-927e7b33d98a-mmCFC0.
Integrated, Maxim. 2015. MAX30102 High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable Health. https://www.alldatasheet.com/datasheet-pdf/view/859400/MAXIM/MAX30102.html.
International Organization for Standardization. 2019. “Ergonomics of the Thermal Environment – Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales.” ISO Standard 10551. International Organization for Standardization. https://www.iso.org/standard/45126.html.
International Standardization Organization (ISO). 2005. “Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of the Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort.” ISO Standard 7730. Geneva.
Landa, Julio, Guillermo Barrios, and Guadalupe Huelsz. 2025. “IoT Smartwatch Based on Open Technologies for the Collection of Thermal Comfort Data.” HardwareX, e00633. https://doi.org/10.1016/j.ohx.2025.e00633.
Larriva, María Teresa Baquero, and Ester Higueras García. 2019. “Confort Térmico de Adultos Mayores: Una Revisión Sistemática de La Literatura Científica.” Revista Española de Geriatría y Gerontología 54 (5): 280–95. https://doi.org/10.1016/j.regg.2019.01.006.
Liu, Shichao, Stefano Schiavon, Hari Prasanna Das, Ming Jin, and Costas J. Spanos. 2019. “Personal Thermal Comfort Models with Wearable Sensors.” Building and Environment 162 (September): 106281. https://doi.org/10.1016/j.buildenv.2019.106281.
López-Pérez, L. A., J. J. Flores-Prieto, and C. Ríos-Rojas. 2019. “Adaptive Thermal Comfort Model for Educational Buildings in a Hot-Humid Climate.” Building and Environment 150 (March): 181–94. https://doi.org/10.1016/j.buildenv.2018.12.011.
Lorentzen, Diego M. P. Chatellier, and Michael A. McNeil. 2020. “Electricity Demand of Non-Residential Buildings in Mexico.” Sustainable Cities and Society 59 (August). https://doi.org/10.1016/j.scs.2020.102165.
LVGL Project. 2024. LVGL – Light and Versatile Embedded Graphics Library.” https://lvgl.io/.
Lyu, Junmeng, Yongxiang Shi, Heng Du, and Zhiwei Lian. 2023. “Sex-Based Thermal Comfort Zones and Energy Savings in Spaces with Joint Operation of Air Conditioner and Fan.” Building and Environment. https://doi.org/ 10.1016/j.buildenv.2023.111002 .
Malakhatka, Elena, Anas Al Rahis, Osman Osman, and Per Lundqvist. 2021. “Monitoring and Predicting Occupant’s Sleep Quality by Using Wearable Device OURA Ring and Smart Building Sensors Data (Living Laboratory Case Study).” Buildings 11 (October): 459. https://doi.org/10.3390/buildings11100459.
Martínez, Rincón, Martínez torres, González Trevizo, and Fernández Melchor. 2020. “Modelos Matemáticos Para Estimar El Confort Térmico Adaptativo En Espacios Interiores: Un Estudio En La Transición Térmica de Ensenada, b.c.”
Masterton, J. M., F. A. Richardson, and Canada. Service de l’environnement atmosphérique. 1979. Humidex: A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity, by j.m. Masterton and f.a. Richardson. 28cm. Cli,1. Service de l’environnement atmospherique. https://books.google.com.mx/books?id=DBIazQEACAAJ.
Melexis. 2009. MLX90614 Infra Red Thermometer in TO-39. https://www.melexis.com/en/documents/documentation/datasheets/mlx90614-datasheet.
Mishra, Asit Kumar, and Maddali Ramgopal. 2013. “Field Studies on Human Thermal Comfort — an Overview.” Building and Environment 64 (June): 94–106. https://doi.org/10.1016/J.BUILDENV.2013.02.015.
Mitigation of Climate Change, Climate Change 2022 -. 2022. “Mitigation of Climate Change Climate Change 2022 Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.” https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf.
Naheed, Sanober, and Salman Shooshtarian. 2021. “A Review of Cultural Background and Thermal Perceptions in Urban Environments.” Sustainability 13 (16): 9080–80. https://doi.org/10.3390/SU13169080.
Nazarian, Negin, Sijie Liu, Manon Kohler, Jason K W Lee, Clayton Miller, Winston T L Chow, Sharifah Badriyah Alhadad, et al. 2021. “Project Coolbit: Can Your Watch Predict Heat Stress and Thermal Comfort Sensation?” Environmental Research Letters 16 (March): 034031. https://doi.org/10.1088/1748-9326/abd130.
Nkurikiyeyezu, Kizito N., Yuta Suzuki, and Guillaume F. Lopez. 2017. “Heart Rate Variability as a Predictive Biomarker of Thermal Comfort.” Journal of Ambient Intelligence and Humanized Computing 9 (5): 1465–77. https://doi.org/10.1007/s12652-017-0567-4.
Olabi, A. G., Mohammad Ali Abdelkarem, and Hussam Jouhara. 2023. “Energy Digitalization: Main Categories, Applications, Merits, and Barriers.” Energy. Elsevier Ltd. https://doi.org/10.1016/j.energy.2023.126899.
Olgyay, V., D. Lyndon, J. Reynolds, and K. Yeang. 1963. Design with Climate: Bioclimatic Approach to Architectural Regionalism - New and Expanded Edition. Princeton University Press. https://books.google.com.mx/books?id=RRQ-CgAAQBAJ.
Olsen, Alexander. 2024. “Indoor Climate.” In, 385–94. https://doi.org/10.1007/978-3-031-57974-5_34.
Organización de las Naciones Unidas. 2015. “Transforming Our World: The 2030 Agenda for Sustainable Development.” https://digitallibrary.un.org/record/3923923.
Oropeza-Perez, Ivan, Astrid H. Petzold-Rodriguez, and Claudia Bonilla-Lopez. 2017. “Adaptive Thermal Comfort in the Main Mexican Climate Conditions with and Without Passive Cooling.” Energy and Buildings 145 (June): 251–58. https://doi.org/10.1016/j.enbuild.2017.04.031.
Pedro Mondelo, Rafael García, Antoni Santaliestra, and Miguel Sanz. 2001. Ergonomía 2: Confort y Estrés Térmico. 3rd ed. Barcelona, España: Universidad Politécnica de Cataluña.
Rincón-Martínez, J C, and Int. 2019. “Experimental Thermal Comfort Under Lab Controlled Conditions:an Applied Case.” Journal of Engineering Research and Application Www.ijera.com 9: 18–26. https://doi.org/10.9790/9622-0912021826.
Ritchie, Hannah. 2020. “Sector by Sector: Where Do Global Greenhouse Gas Emissions Come From?” Our World in Data.
Romero Moreno, Ramona Alicia, and José Luis Ochoa de la Torre. 2020. Confort térmico y Ahorro de Energı́a En La Vivienda Económica En méxico: Regiones de Clima cálido Seco y húmedo. Universidad de Sonora. https://books.google.com.mx/books?id=q1Yo0AEACAAJ.
Sakoi, Tomonori, Yoshihito Kurazumi, Sri Rahma Apriliyanthi, Shin-ichi Sawada, and Chuansi Gao. 2023. “5. Human Body Heat Balance Equation to Consider Core Body Temperature in Assessment of Heatstroke Risk.” Building and Environment. https://doi.org/10.1016/j.buildenv.2023.111020.
Secretaría de Energía. 2023. “Balance Nacional de Energía Preliminar 2022.” https://www.gob.mx/cms/uploads/attachment/file/841526/BNE_2022.pdf.
Sim, Jai Kyoung, Sunghyun Yoon, and Young-Ho Cho. 2018. “Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.” Scientific Reports 8 (January): 1181. https://doi.org/10.1038/s41598-018-19239-8.
Sim, Soo Young, Myung Jun Koh, Kwang Min Joo, Seungwoo Noh, Sangyun Park, Youn Ho Kim, Kwang Suk Park, and Angelo Maria Sabatini. 2016. “Estimation of Thermal Sensation Based on Wrist Skin Temperatures.” https://doi.org/10.3390/s16040420.
Solution, ETA. 2024. ETA6003 2.5A, 3MHz Switching Charger with Dynamic Power Path Management. ETA Solution. https://files.seeedstudio.com/wiki/round_display_for_xiao/charge-IC-datasheet.pdf.
Studio, Seeed. 2024. “Seeed Studio XIAO ESP32C3 Development Board.” https://www.seeedstudio.com/Seeed-XIAO-ESP32C3-p-5431.html?srsltid=AfmBOopHrrta3vMhxj9CZJasHKtro5S9tVjwzPT3-KtKiNUV8CeFVebb.
Synthesis Report, Climate Change 2023: 2023. “IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups i, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, h. Lee and j. Romero (Eds.)]. IPCC, Geneva, Switzerland.” Edited by Paola Arias, Mercedes Bustamante, Ismail Elgizouli, Gregory Flato, Mark Howden, Carlos Méndez-Vallejo, Joy Jacqueline Pereira, et al. Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647.
Tartarini, Federico, Stefano Schiavon, Matias Quintana, and Clayton Miller. 2022. “Personal Comfort Models Based on a 6‐month Experiment Using Environmental Parameters and Data from Wearables.” Indoor Air 32 (November). https://doi.org/10.1111/ina.13160.
uElectronics. 2024. “Motor de Vibración 5V.” https://uelectronics.com/producto/motor-vibracion-5v/?srsltid=AfmBOoobMBx68FsKl3OQeHRxlqV72c0WFDIICCubVzyQFrHrNYflB-w4.
Yao, Runming, Baizhan Li, and Jing Liu. 2009. “A Theoretical Adaptive Model of Thermal Comfort – Adaptive Predicted Mean Vote (aPMV).” Building and Environment 44 (10): 2089–96. https://doi.org/10.1016/j.buildenv.2009.02.014.
Zepeda-Gil, Carlos, and Sukumar Natarajan. 2022. “Thermal Comfort in Naturally Ventilated Dwellings in the Central Mexican Plateau.” Building and Environment 211 (March). https://doi.org/10.1016/j.buildenv.2021.108713.