Referencias
Allen, John. 2007. “Photoplethysmography and Its Application in
Clinical Physiological Measurement.” Physiological
Measurement 28 (3): R1. https://doi.org/10.1088/0967-3334/28/3/R01.
American Society of Heating, Refrigerating and Air-Conditioning
Engineers. 2009. ASHRAE Handbook—Fundamentals (SI Edition).
Atlanta, GA: ASHRAE.
American Society of Heating, Refrigerating and Air-Conditioning
Engineers, Inc. 2017. Thermal Environmental Conditions for Human
Occupancy. ASHRAE Standard 55-2017. American Society of Heating,
Refrigerating; Air-Conditioning Engineers, Inc.
Bogatu, Dragos Ioan, Jun Shinoda, José Joaquín Aguilera, Bjarne W.
Olesen, Futa Watanabe, Yosuke Kaneko, and Ongun B. Kazanci. 2023.
“Human Physiology for Personal Thermal Comfort-Based HVAC Control
– a Review.” Building and Environment 240 (July):
110418. https://doi.org/10.1016/J.BUILDENV.2023.110418.
Calixto Aguirre, Verónica Ivette. 2021. “Thermal Comfort
Studies.” Master’s thesis, Temixco, Morelos, México: Universidad
Nacional Autónoma de México, Programa de Maestría y Doctorado en
Ingeniería, Instituto de Energías Renovables. http://132.248.9.195/ptd2021/septiembre/0814603/Index.html.
Cen, Chao, Siyu Cheng, and Nyuk Hien Wong. 2023. “Effect of
Elevated Air Temperature and Air Velocity on Thermal Comfort and
Cognitive Performance in the Tropics.” Building and
Environment 234: 110203–3. https://doi.org/10.1016/j.buildenv.2023.110203.
Chaudhuri, Tanaya, Yeng Chai Soh, Hua Li, and Lihua Xie. 2020.
“Machine Learning Driven Personal Comfort Prediction by Wearable
Sensing of Pulse Rate and Skin Temperature.” Building and
Environment 170 (March): 106615. https://doi.org/10.1016/j.buildenv.2019.106615.
Chaudhuri, Tanaya, Deqing Zhai, Yeng Chai Soh, Hua Li, and Lihua Xie.
2018. “Random Forest Based Thermal Comfort Prediction from
Gender-Specific Physiological Parameters Using Wearable Sensing
Technology.” Energy and Buildings 166 (May): 391–406. https://doi.org/10.1016/J.ENBUILD.2018.02.035.
Cho, Seonghun, Hong Jae Nam, Chuanqi Shi, Choong Yeon Kim, Sang-Hyuk
Byun, Karen-Christian Agno, Byung Chul Lee, Jianliang Xiao, Joo Yong
Sim, and Jae-Woong Jeong. 2023. “Wireless, AI-Enabled Wearable
Thermal Comfort Sensor for Energy-Efficient, Human-in-the-Loop Control
of Indoor Temperature.” Biosensors and Bioelectronics
223 (March): 115018. https://doi.org/10.1016/j.bios.2022.115018.
Choi, Joon Ho, and Dongwoo Yeom. 2017. “Study of Data-Driven
Thermal Sensation Prediction Model as a Function of Local Body Skin
Temperatures in a Built Environment.” Building and
Environment 121 (August): 130–47. https://doi.org/10.1016/J.BUILDENV.2017.05.004.
D. Morillón, T. I. Castañeda, F. R. Saldaña, and M. U. Miranda. 2002.
“Atlas Bioclimático de La República Mexicana.” Energías
Renovables y Medio Ambiente 10: 57–62.
Departamento de Defensa de EE.UU. 2009. “Desarrollo de Tecnología Abierta: Lecciones aprendidas y
mejores prácticas para software militar.” https://dodcio.defense.gov/Portals/0/Documents/FOSS/OTD-lessons-learned-military-signed.pdf.
Enescu, Diana. 2017. “A Review of Thermal Comfort Models and
Indicators for Indoor Environments.” Renewable and
Sustainable Energy Reviews 79 (November): 1353–79. https://doi.org/10.1016/J.RSER.2017.05.175.
Fanger, P. O. 1970. Thermal Comfort: Analysis and Applications in
Environmental Engineering. Copenhagen: Danish Technical Press. https://archive.org/details/thermalcomfortan0000fang.
Fanger, P. O., and Jørn Toftum. 2002. “Extension of the PMV Model
to Non-Air-Conditioned Buildings in Warm Climates.” Energy
and Buildings 34 (6): 533–36. https://doi.org/10.1016/S0378-7788(02)00003-8.
Feng, Yanxiao, Julian Wang, Nan Wang, and Chenshun Chen. 2023.
“Alert-Based Wearable Sensing System for Individualized Thermal
Preference Prediction.” Building and Environment 232
(March): 110047. https://doi.org/10.1016/J.BUILDENV.2023.110047.
Garces, Hugo O., Eduardo Morales, Rodrigo Gomez, Hans Cabrera, and
Eduardo Espinosa. 2021. “Design and Calibration of Low Cost Sensor
Node for Thermal Comfort Estimation.” 2021 29th Mediterranean
Conference on Control and Automation, MED 2021, June, 1215–21. https://doi.org/10.1109/MED51440.2021.9480306.
Gnecco, Veronica Martins, Ilaria Pigliautile, and Anna Laura Pisello.
2023. “Long-Term Thermal Comfort Monitoring via Wearable Sensing
Techniques: Correlation Between Environmental Metrics and Subjective
Perception.” Sensors 23 (January): 576. https://doi.org/10.3390/s23020576.
Gómez-Azpetia, G., E. López Gómez, and M. Peña. 2006.
“Adaptación Del ı́Ndice
Humidex Para El Clima de La Ciudad de Colima, méxico, de
Acuerdo Con El Enfoque Adaptativo.” Anuario VIII: 77–92.
He, Weilin, Cheng Fan, Zebin Wu, and Qiaoqiao Yong. 2025. “An IMU
Dataset for Human Thermal Comfort Activities Identification:
Experimental Designs and Applications.” Energy and Built
Environment 6: 66–79. https://doi.org/10.1016/j.enbenv.2023.09.001.
Integrated, Maxim. 2015. MAX30102 High-Sensitivity Pulse Oximeter
and Heart-Rate Sensor for Wearable Health. https://www.alldatasheet.com/datasheet-pdf/view/859400/MAXIM/MAX30102.html.
International Organization for Standardization. 2019. “Ergonomics
of the Thermal Environment – Assessment of the Influence of the Thermal
Environment Using Subjective Judgement Scales.” ISO Standard
10551. International Organization for Standardization. https://www.iso.org/standard/45126.html.
International Standardization Organization (ISO). 2005.
“Ergonomics of the Thermal Environment-Analytical Determination
and Interpretation of the Thermal Comfort Using Calculation of the PMV
and PPD Indices and Local Thermal Comfort.” ISO Standard 7730.
Geneva.
Landa, Julio, Guillermo Barrios, and Guadalupe Huelsz. 2025. “IoT
Smartwatch Based on Open Technologies for the Collection of Thermal
Comfort Data.” HardwareX, e00633. https://doi.org/10.1016/j.ohx.2025.e00633.
Larriva, María Teresa Baquero, and Ester Higueras García. 2019.
“Confort Térmico de Adultos Mayores: Una Revisión Sistemática de
La Literatura Científica.” Revista Española de Geriatría y
Gerontología 54 (5): 280–95. https://doi.org/10.1016/j.regg.2019.01.006.
Liu, Shichao, Stefano Schiavon, Hari Prasanna Das, Ming Jin, and Costas
J. Spanos. 2019. “Personal Thermal Comfort Models with Wearable
Sensors.” Building and Environment 162 (September):
106281. https://doi.org/10.1016/j.buildenv.2019.106281.
López-Pérez, L. A., J. J. Flores-Prieto, and C. Ríos-Rojas. 2019.
“Adaptive Thermal Comfort Model for Educational Buildings in a
Hot-Humid Climate.” Building and Environment 150
(March): 181–94. https://doi.org/10.1016/j.buildenv.2018.12.011.
Lorentzen, Diego M. P. Chatellier, and Michael A. McNeil. 2020.
“Electricity Demand of Non-Residential Buildings in
Mexico.” Sustainable Cities and Society 59 (August). https://doi.org/10.1016/j.scs.2020.102165.
LVGL Project. 2024. “LVGL – Light and
Versatile Embedded Graphics Library.” https://lvgl.io/.
Lyu, Junmeng, Yongxiang Shi, Heng Du, and Zhiwei Lian. 2023.
“Sex-Based Thermal Comfort Zones and Energy Savings in Spaces with
Joint Operation of Air Conditioner and Fan.” Building and
Environment. https://doi.org/
10.1016/j.buildenv.2023.111002 .
Malakhatka, Elena, Anas Al Rahis, Osman Osman, and Per Lundqvist. 2021.
“Monitoring and Predicting Occupant’s Sleep Quality by Using
Wearable Device OURA Ring and Smart Building Sensors Data (Living
Laboratory Case Study).” Buildings 11 (October): 459. https://doi.org/10.3390/buildings11100459.
Martínez, Rincón, Martínez torres, González Trevizo, and Fernández
Melchor. 2020. “Modelos Matemáticos Para Estimar El Confort
Térmico Adaptativo En Espacios Interiores: Un Estudio En La Transición
Térmica de Ensenada, b.c.”
Masterton, J. M., F. A. Richardson, and Canada. Service de
l’environnement atmosphérique. 1979. Humidex: A Method of
Quantifying Human Discomfort Due to Excessive Heat and Humidity, by j.m.
Masterton and f.a. Richardson. 28cm. Cli,1. Service de
l’environnement atmospherique. https://books.google.com.mx/books?id=DBIazQEACAAJ.
Melexis. 2009. MLX90614 Infra Red Thermometer in TO-39. https://www.melexis.com/en/documents/documentation/datasheets/mlx90614-datasheet.
Mishra, Asit Kumar, and Maddali Ramgopal. 2013. “Field Studies on
Human Thermal Comfort — an Overview.” Building and
Environment 64 (June): 94–106. https://doi.org/10.1016/J.BUILDENV.2013.02.015.
Mitigation of Climate Change, Climate Change 2022 -. 2022.
“Mitigation of Climate Change Climate Change 2022 Working Group
III Contribution to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change.” https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf.
Naheed, Sanober, and Salman Shooshtarian. 2021. “A Review of
Cultural Background and Thermal Perceptions in Urban
Environments.” Sustainability 13 (16): 9080–80. https://doi.org/10.3390/SU13169080.
Nazarian, Negin, Sijie Liu, Manon Kohler, Jason K W Lee, Clayton Miller,
Winston T L Chow, Sharifah Badriyah Alhadad, et al. 2021. “Project
Coolbit: Can Your Watch Predict Heat Stress and Thermal Comfort
Sensation?” Environmental Research Letters 16 (March):
034031. https://doi.org/10.1088/1748-9326/abd130.
Nkurikiyeyezu, Kizito N., Yuta Suzuki, and Guillaume F. Lopez. 2017.
“Heart Rate Variability as a Predictive Biomarker of Thermal
Comfort.” Journal of Ambient Intelligence and Humanized
Computing 9 (5): 1465–77. https://doi.org/10.1007/s12652-017-0567-4.
Olabi, A. G., Mohammad Ali Abdelkarem, and Hussam Jouhara. 2023.
“Energy Digitalization: Main Categories, Applications, Merits, and
Barriers.” Energy. Elsevier Ltd. https://doi.org/10.1016/j.energy.2023.126899.
Olgyay, V., D. Lyndon, J. Reynolds, and K. Yeang. 1963. Design with
Climate: Bioclimatic Approach to Architectural Regionalism - New and
Expanded Edition. Princeton University Press. https://books.google.com.mx/books?id=RRQ-CgAAQBAJ.
Olsen, Alexander. 2024. “Indoor Climate.” In, 385–94. https://doi.org/10.1007/978-3-031-57974-5_34.
Organización de las Naciones Unidas. 2015. “Transforming Our
World: The 2030 Agenda for Sustainable Development.” https://digitallibrary.un.org/record/3923923.
Oropeza-Perez, Ivan, Astrid H. Petzold-Rodriguez, and Claudia
Bonilla-Lopez. 2017. “Adaptive Thermal Comfort in the Main Mexican
Climate Conditions with and Without Passive Cooling.” Energy
and Buildings 145 (June): 251–58. https://doi.org/10.1016/j.enbuild.2017.04.031.
Pedro Mondelo, Rafael García, Antoni Santaliestra, and Miguel Sanz.
2001. Ergonomía 2: Confort y Estrés Térmico. 3rd ed. Barcelona,
España: Universidad Politécnica de Cataluña.
Rincón-Martínez, J C, and Int. 2019. “Experimental Thermal Comfort
Under Lab Controlled Conditions:an Applied Case.” Journal of
Engineering Research and Application Www.ijera.com 9: 18–26. https://doi.org/10.9790/9622-0912021826.
Ritchie, Hannah. 2020. “Sector by Sector: Where Do Global
Greenhouse Gas Emissions Come From?” Our World in Data.
Romero Moreno, Ramona Alicia, and José Luis Ochoa de la Torre. 2020.
Confort térmico y Ahorro de Energı́a En La
Vivienda Económica En méxico: Regiones de
Clima cálido Seco y húmedo. Universidad
de Sonora. https://books.google.com.mx/books?id=q1Yo0AEACAAJ.
Sakoi, Tomonori, Yoshihito Kurazumi, Sri Rahma Apriliyanthi, Shin-ichi
Sawada, and Chuansi Gao. 2023. “5. Human Body Heat Balance
Equation to Consider Core Body Temperature in Assessment of Heatstroke
Risk.” Building and Environment. https://doi.org/10.1016/j.buildenv.2023.111020.
Secretaría de Energía. 2023. “Balance Nacional de Energía
Preliminar 2022.” https://www.gob.mx/cms/uploads/attachment/file/841526/BNE_2022.pdf.
Sim, Jai Kyoung, Sunghyun Yoon, and Young-Ho Cho. 2018. “Wearable
Sweat Rate Sensors for Human Thermal Comfort Monitoring.”
Scientific Reports 8 (January): 1181. https://doi.org/10.1038/s41598-018-19239-8.
Sim, Soo Young, Myung Jun Koh, Kwang Min Joo, Seungwoo Noh, Sangyun
Park, Youn Ho Kim, Kwang Suk Park, and Angelo Maria Sabatini. 2016.
“Estimation of Thermal Sensation Based on Wrist Skin
Temperatures.” https://doi.org/10.3390/s16040420.
Solution, ETA. 2024. ETA6003 2.5A, 3MHz Switching Charger with
Dynamic Power Path Management. ETA Solution. https://files.seeedstudio.com/wiki/round_display_for_xiao/charge-IC-datasheet.pdf.
Studio, Seeed. 2024. “Seeed Studio XIAO ESP32C3 Development
Board.” https://www.seeedstudio.com/Seeed-XIAO-ESP32C3-p-5431.html?srsltid=AfmBOopHrrta3vMhxj9CZJasHKtro5S9tVjwzPT3-KtKiNUV8CeFVebb.
Synthesis Report, Climate Change 2023: 2023. “IPCC, 2023: Climate
Change 2023: Synthesis Report. Contribution of Working Groups i, II and
III to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change [Core Writing Team, h. Lee and j. Romero (Eds.)]. IPCC,
Geneva, Switzerland.” Edited by Paola Arias, Mercedes Bustamante,
Ismail Elgizouli, Gregory Flato, Mark Howden, Carlos Méndez-Vallejo, Joy
Jacqueline Pereira, et al. Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647.
Tartarini, Federico, Stefano Schiavon, Matias Quintana, and Clayton
Miller. 2022. “Personal Comfort Models Based on a 6‐month
Experiment Using Environmental Parameters and Data from
Wearables.” Indoor Air 32 (November). https://doi.org/10.1111/ina.13160.
uElectronics. 2024. “Motor de Vibración 5V.” https://uelectronics.com/producto/motor-vibracion-5v/?srsltid=AfmBOoobMBx68FsKl3OQeHRxlqV72c0WFDIICCubVzyQFrHrNYflB-w4.
Yao, Runming, Baizhan Li, and Jing Liu. 2009. “A Theoretical
Adaptive Model of Thermal Comfort – Adaptive Predicted
Mean Vote (aPMV).” Building and Environment 44 (10):
2089–96. https://doi.org/10.1016/j.buildenv.2009.02.014.
Zepeda-Gil, Carlos, and Sukumar Natarajan. 2022. “Thermal Comfort
in Naturally Ventilated Dwellings in the Central Mexican
Plateau.” Building and Environment 211 (March). https://doi.org/10.1016/j.buildenv.2021.108713.