Contenido

1.	Introducción	3
2.	Arquitectura vernácula	4
3.	Clima	11
4.	Confort higrotérmico	15
	4.1. Metodologías	15
	4.2. Herramientas	17
	4.3. Experimentos	18
5 .	Diseño bioclimático integral	26
	5.1. Criterios	26
	5.2. Herramientas	30
	5.3. Casos de estudio	35
	5.4. Prototipos	36
6.	Desempeño térmico de materiales de la envolvente	50
	6.1. Simulaciones numéricas-computacionales y modelos matemáticos	51
	6.2. Experimentos de transferencia de calor	54
	6.3. Sistemas constructivos	57
	6.4. Nuevos materiales	58
	6.5. Uso de materiales reciclados	59
	6.6. Caracterización de materiales	60
7.	Ventilación	73
8.	Protección solar	79
9.	Acondicionamiento higrotérmico	83
-	9.1. Enfriamiento	83
	9.1.1. Sistemas pasivos	83
	9.1.2. Sistemas de bajo consumo de energía	85
	9.2. Calentamiento	86
	9.2.1. Sistemas pasivos	
	9.2.2. Sistemas de bajo consumo de energía	
	9.3 Sistemas duales	87

9.4. Deshumidificación	87
10. Iluminación	92
11.Adecuaciones bioclimáticas a edificaciones existentes 11.1. Propuestas	
12.Autogeneración integrada	108
13. Transferencia de calor en edificaciones 13.1. Simulaciones numéricas y modelos matemáticos 13.2. Simulaciones por computadora	113
14. Estudios básicos 14.1. Mecánica de fluidos 14.2. Transferencia de calor	
15.Urbanismo sustentable	130
16. Normatividad	139
17.Programas de estudio relacionado	144
18. Conclusiones	146

1. Introducción

Este trabajo presenta un análisis de lo que se ha publicado en México en torno a la energía en las edificaciones. Tiene por objeto ser una herramienta de consulta ya que revela qué es lo que se ha publicado, bajo qué temas y por qué grupos de investigación.

Para llevar esto a cabo se realizó la revisión bibliográfica de las memorias de los congresos anuales de la Asociación Nacional de Energía Solar, del 2000 al 2010.

Dentro de las memorias de la Asociación Nacional de Energía Solar (ANES), se seleccionaron las publicaciones pertenecientes a la sección de Energía en Edificaciones o Arquitectura Bioclimática. Se presentan un total de 423 artículos.

Estos artículos se clasificaron en 16 secciones de acuerdo a su tema de estudio. En cada sección se expone un análisis con la siguiente estructura: Primero se define el concepto del tema contenido en la sección; en caso de haber subsecciones se establecen los criterios para cada una de éstas. Luego se indica el número de publicaciones dentro de la sección y por subsección, en caso de haberlas. Por último se establecen los grupos de investigación que han publicado más artículos relativos al tema, de forma descendente, indicando el número de publicaciones por autor. Después del análisis se presenta un extracto muy sintetizado de cada publicación, en forma cronológica, indicando el año y los autores. Al final de cada sección se incluyen las fichas bibliográficas de cada artículo.

2. Arquitectura vernácula

La arquitectura vernácula comprende las construcciones tradicionales inherentes de cierta región. Dentro de este tipo de arquitectura se encuentran aquellas edificaciones que datan de la era prehispánica y el periodo colonial, así como las construcciones actuales que siguen una línea tradicional.

Éste es un tema útil de estudio, pues presenta conceptos bioclimáticos que se han utilizado a lo largo de la historia, pero que se han ido perdiendo. Así, en la arquitectura se ha ido mermando el carácter bioclimático gracias a la industrialización de los materiales, el fácil acceso a la energía y la consigna de los constructores de edificar reduciendo recursos en la mayor medida posible; todo esto alejado de los criterios bioclimáticos que han caracterizado a las construcciones desde la antigüedad.

De 2000 a 2010 en los congresos de la ANES, se han presentado 27 artículos en este tema. El grupo que más trabajos ha reportado es la Universidad Autónoma Metropolitana, con Aníbal Figueroa y Gloria Castorena (7 publicaciones); así como Victor Fuentes, Manuel Rodríguez y Guillermo Corro (3). Otro grupo importante es el Instituto de Ingeniería de la UNAM, con David Morillón (3).

En el 2000, Luis Guerrero reporta un análisis comparativo de los elementos bioclimáticos de viviendas prehispánicas y coloniales de los alrededores de la ciudad de Trujillo, Perú (1100 d.c.- 1450 d.c.) y de Casas Grandes, Chihuahua (desde 700 d.c.) [1].

Juan Rodríguez y Carlos Castañeda publican los primeros resultados del análisis a los elementos generales de Geometría Solar en el sitio arqueológico de Plazuelas (Guanajuato, 600 – 900 d.c.) [2].

En el 2002, Guillermo Corro trata sobre las construcciones en el periodo de 951 a 1980. Expone los elementos de arquitectura vernácula que pueden emplearse en los diseño arquitectónicos bioclimáticos actualmente en esta zona [3].

Aníbal Figueroa y Gloria Castorena analizan edificios conventuales como el antigüo colegio de Tepotzotlán, en donde demuestran el notable efecto del amortigüamiento de temperatura y el retardo térmico, producto del empleo de muros masivos de hasta un metro de ancho [4].

En el 2003, Gloria Castorena y Aníbal Figueroa presentan un antigüo colegio Jesuita, donde aparece un espacio cuyo emplazamiento y orientación respondían a obtener la máxima ganancia del recorrido solar. Dicha investigación documenta las estrategias de diseño de este espacio para el calentamiento pasivo [5].

En el 2004, Victor Fuentes, Luis Guerrero y Rosalía Manríquez identifican criterios bioclimáticos con respecto al comportamiento de elementos arquitectónicos tradicionales, para ser utilizados como conceptos de diseño en futuras obras [6].

Carlos Carrazco y David Morillón realizan un estudio de la arquitectura vernácula en el noroeste de México, destacando los elementos bioclimáticos característicos y proponen tomarlos en cuenta para mejorar el diseño de la arquitectura a futuro [7].

Gloria Castorena, Israel Frutiz, Miriam Arauza y Luis Ortega analizan el conjunto monacal de San Nicolás Tolentino bajo una visión bioclimática que permita entender el emplazamiento y orientación del conjunto, la autosuficiencia y el uso racional de los recursos para su operación como la captación de agua pluvial [8].

Carlos Carrazco y David Morillón analizan a través de Trnsys el comportamiento térmico de la arquitectura vernácula en clima cálido seco (noroeste de México) con el objeto de emitir un diagnóstico de las ventajas y desventajas de sus elementos bioclimáticos [9].

En el 2005, Victor Fuentes y Manuel Rodríguez analizan la arquitectura tradicional de tres poblaciones de la región maya, destacando sus componentes bioclimáticos [10].

Ma. de Lourdes Ocampo y Arturo Mérida realizaron mediciones de la temperatura del aire en viviendas tradicionales y contemporáneas. Los resultados muestran una reducción de 13°C en los espacios cerrados de las viviendas tradicionales con respecto a las contemporáneas, debido al grosor de los muros y los materiales de construcción [11].

En el 2006, Joel Meléndez y Raymundo Mayorga hacen un estudio sobre la vivienda vernácula en Amecameca, Estado de México. Destacan estrategias bioclimáticas como: orientación, materiales, (adobe y teja de barro) y masividad de muros [12].

José Ramírez y Jesús Cuevas muestran la ciudad de Tlacotalpan, Veracruz como un ejemplo de arquitectura vernácula bioclimática: la orientación de sus manzanas, los callejones en el oriente y poniente, la doble altura, la ventilación cruzada, los patios centrales y la exuberante vegetación [13].

Alejandra Zermeño y David Morillón presentan una metodología para identificar los elementos de adecuación bioclimática en la arquitectura vernácula. Utilizan esta tecnología aplicándola sobre algunas viviendas en la ciudad de Chiapa de Corzo, Chiapas [14].

Aníbal Figueroa, Gloria Castorena y Salvador Islas documentan los conceptos y elementos de diseño bioclimático aplicados por Hassan Fathy (1900-1989) en múltiples construcciones en Arabia [15].

Asimismo, Gloria Castorena y Aníbal Figueroa analizan y evalúan el convento de Santo Domingo en Oaxaca, bajo una perspectiva bioclimática. Destacan estrategias como la orientación, masividad de muros, aprovechamiento de luz, recolección de agua, etc. [16].

Francisco López y Diego Morales hacen un estudio durante las 24 horas de un día caluroso representativo. Comparan las condiciones climáticas exteriores y analizan cómo se comporta térmicamente un edificio característico del siglo XVIII [17].

En el 2007, Guillermo Corro presenta un conjunto de publicaciones e investigaciones que se han realizado respecto a la arquitectura vernácula a lo largo del tiempo, desde el siglo XVIII hasta la fecha, sobre todo en México [18].

En el 2008, Héctor González estudia el desempeño térmico, habitabilidad y adaptación al medio ambiente de la vivienda de madera en una comunidad de Michoacán. El comportamiento térmico de la vivienda de madera presenta un mejor desempeño que el de la vivienda construida con materiales industrializados [19].

Claudia Calderón realiza una evaluación comparativa de la adecuación bioclimática de la viviendas tradicionales de Ensenada, Baja California dentro de sus dos tipos y tecnologías constructivas identificadas (adobe y madera) y en las dos temporadas climáticas críticas de la ciudad (invierno y verano). Se concluye, a partir del monitoreo de temperatura y humedad relativa, que la vivienda construida en madera, de origen anglosajón, presenta un mejor desempeño higrotérmico [20].

Alma Ortega, Jazmín Carbajal y Angélica Pérez proporcionan una perspectiva histórica de la evolución de las cubiertas verdes, de acuerdo a su localización geográfica, los materiales que se utilizaron y los sistemas constructivos empleados. Expone una serie de ventajas de utilizar este tipo de cubierta [21].

En el 2009, Ikuo Kusuhara estudia las haciendas de México. Basado en 753 casos, crea la tipología morfológica según su tipo de planta y de techo en relación a la temperatura, precipitación y humedad relativa. Deja en evidencia la adecuación bioclimática de este tipo de construcciones [22].

José Moreno, Paulina Martínez y Francisco Sánchez visualizan la dinámica de la ventilación, por medio de un túnel de viento con humo, en una edificación del siglo XIX en Colima. Establece que los elementos principales de este tipo de arquitectura para adaptarse al clima son el patio central, los pórticos y las contraventanas [23].

Inocente Bojórquez, Lorena Puc y Jesús Castillo realizan un análisis comparativo, por medio de una cámara fototérmica, entre las temperaturas superfi-

ciales de diversos materiales utilizados en viviendas vernáculas del Caribe Mexicano. Proporcionan recomendaciones arquitectónicas basadas en los antecedentes históricos, que pueden ser utilizadas actualmente [24].

Gloria Castorena y Aníbal Figueroa analizan el potencial de ahorro energético que aporta la arquitectura vernácula iluminada naturalmente. Destacan diferentes alternativas de iluminación natural que pueden ser utilizadas para los edificios contemporáneos [25].

En el 2010, Lidia Sandoval presenta las características y elementos descriptivos de la arquitectura de las regiones de Cd. Juárez y el Paso a través del tiempo, desde la era prehispánica. Demuestra la relevancia del aspecto bioclimático de los elementos envolventes [26].

Selena Laguna y Esperanza García presentan los elementos particulares y distintivos de los tipos de arquitectura tradicional de la Huasteca en su relación con los climas y proponen una clasificación [27].

Referencias

- [1] Luis Guerrero [UAM]. Recursos de control térmico en viviendas vernáculas del norte de México y Perú, un análisis comparativo. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 25–29, 2000.
- [2] Juan Rodríguez, RobertoÑavarrete [UGTO], José Martínez, and Carlos Castañeda [INAH]. Análisis de los elementos de geometría solar y su relación con la conformación de un sitio prehispánico. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 31–34, 2000.
- [3] Guillermo Corro [UAM]. Análisis de los elementos bioclimáticos empleados en la arquitectura vernácula de la zona altiplana-lacustre del estado de Michoacán, México. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 119–124, 2002.
- [4] Gloria Castorena and Aníbal Figueroa [UAM]. Los efectos de la masividad de muros y losas en las condiciones higro-térmicas interiores del antiguo colegio de Tepotzotlán. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 193–199, 2002.
- [5] Gloria Castorena and Aníbal Figueroa [UAM]. Estudio del comportamiento bioclimático del solario en el antiguo colegio Jesuita ubicado en Tepotzotlán,

- Estado de México. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 75–78, 2003.
- [6] Rosalía Manriquez, Victor Fuentes, and Luis Guerrero [UAM]. La arquitectura tradicional como referencia para el diseño bioclimático. Caso de estudio: Tecozautla, Hgo. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 13–18, 2004.
- [7] Carlos Carrazco [CIE-UNAM] and David Morillón [II-UNAM]. Elementos bioclimáticos de la arquitectura vernácula en clima cálido seco. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 95–98, 2004.
- [8] Gloria Castorena, Israel Frutiz, Miriam Arauza, and Luis Ortega [UAM]. La respuesta bioclimática de la arquitectura conventual. Caso de estudio: San Nicolás Tolentino en Actopan, Hidalgo. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 99–102, 2004.
- [9] Carlos Carrazco [CIE-UNAM] and David Morillón [II-UNAM]. Análisis del comportamiento de la arquitectura vernácula de clima cálido seco. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 171–175, 2004.
- [10] Victor Fuentes and Manuel Rodríguez [UAM]. Caracterización bioclimática de la arquitectura tradicional maya en función de la latitud y altitud. Memoria de la XXIX Semana Nacional de Energía Solar, pages 79–84, 2005.
- [11] Ma. de Lourdes Ocampo and Arturo Mérida [UACH]. Elementos bioclimáticos de la arquitectura tradicional de Chiapa de Corzo para su conservación. Memoria de la XXIX Semana Nacional de Energía Solar, pages 95–98, 2005.
- [12] Joel Meléndez and Raymundo Mayorga [IPN]. El confort térmico del hombre en la vivienda vernácula. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 145–150, 2006.
- [13] José Ramírez and Jesús Cuevas [U. de Cristóbal Colón]. Arquitectura vernácula de la ciudad de Tlacotalpan, Veracruz, Méx (ecología e impacto ambiental). *Memoria de la XXX Semana Nacional de Energía Solar*, pages 171–176, 2006.
- [14] Alejandra Zermeño and David Morillón [II-UNAM]. Metodología para el análisis bioclimático de la arquitectura vernácula, Caso: Chiapa de Corzo,

- Chiapas. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 195–203, 2006.
- [15] Aníbal Figueroa, Gloria Castrejón, and Salvador Islas [UAM]. El legado bioclimático de Hassan Fathy: Nueva Gourna revisitado. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 211–216, 2006.
- [16] Gloria Castorena and Aníbal Figueroa [UAM]. Análisis del comportamiento bioclimático de los edificios del siglo XVI y XVII en el exconvento de Santo Domingo en Oaxaca. Memoria de la XXX Semana Nacional de Energía Solar, pages 253–258, 2006.
- [17] Francisco López and Diego Morales [FA-UNAM]. Análisis térmico de edificio del siglo XVIII, caso de estudio: Casa de la Ciudad, Oaxaca, Oax. Memoria de la XXX Semana Nacional de Energía Solar, pages 265–269, 2006.
- [18] Guillermo Corro [UAM]. Estado del arte del análisis bioclimático de la arquitectura vernácula. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–18, 2007.
- [19] Héctor González [UMICH]. Desempeño térmico y determinación de la zona de confort en la vivienda tradicional de madera "Troje", en Tapán, Mich., México. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–10, 2008.
- [20] Claudia Calderón [UAM]. Adecuación bioclimática de la vivienda tradicional de adobe y madera en Ensenada, Baja California. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-14, 2008.
- [21] Alma Ortega, Jazmín Carbajal, and Angélica Pérez [FA-UNAM]. Cubiertas vegetales, una revisión histórica y técnica. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–29, 2008.
- [22] Ikuo Kusuhara [II-UNAM]. Un panorama sobre el aspecto bioclimático de la arquitectura de las antiguas haciendas mexicanas. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-24, 2009.
- [23] José Moreno, Paulina Martínez, and Francisco Sánchez [I.T. de Colima]. Efecto de la ventilación en el confort térmico en Colima (análisis retrospectivo). Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-25, 2009.

- [24] Inocente Bojórquez, Lorena Puc [UQROO], and Jesús Castillo [I.T. de Chetumal]. Estudio sobre la eficiencia térmica de materiales utilizados en la arquitectura vernácula del Caribe Mexicano. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–34, 2009.
- [25] Gloria Castorena and Aníbal Figueroa [UAM]. Análisis de los sistemas de iluminación natural en la arquitectura conventual. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-46, 2009.
- [26] Lidia Sandoval [UACJ]. Elementos envolventes bioclimáticos en la arquitectura. Región Ciudad Juárez / El Paso. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-05, 2010.
- [27] Selena Laguna and Esperanza García [UAM]. Clasificación bioclimática de la arquitectura tradicional en la región Huasteca. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–34, 2010.

3. Clima

En este capítulo se incluyen los artículos relacionados con el clima. En este sentido, el estudio del clima tiene la finalidad de establecer las bases para los criterios del diseño bioclimático. Los parámetros relacionados con el clima son la temperatura, humedad y radiación, entre otros.

En los congreso de la ANES, del 2000 al 2010 se han publicado 11 artículos relativos a este tema. Los grupos que han presentado más de un artículo son la Universidad Autónoma de Baja California, con por Rafael García (2 publicaciones); la Universidad Autónoma Metropolitana, con Victor Fuentes (2); y el Instituto Mexicano del Petróleo, con Christopher Heard (2).

En el 2001, Guadalupe Alpuche y Christopher Heard muestran una metodología para la ordenación, análisis y cálculo de datos climatológicos, así como propiedades psicrométricas del aire, necesarios para completar un archivo de datos de entrada para el simulador PowerDoe [1].

Victor Fuentes y Manuel Rodríguez muestran los métodos matemáticos más comunes que permiten estimar los datos climatológicos básicos necesarios para el diseño bioclimático [2].

En el 2002, David Morillón, Ricardo Saldaña y Ubaldo Miranda ilustran los planos del Bioclima de la República Mexicana con base en el confort higrotérmico [3].

Ignacio Martín y Rosana Hernández presentan los datos climáticos de cuatro ciudades representativas del estado de Chihuahua, suficientes para llevar a cabo simulaciones del uso de energía en edificaciones o diseño de sistemas de aprovechamiento de energía solar [4].

En el 2004, Ronaldo Inglés y Rafael García realizan una amplia revisión bibliográfica para seleccionar el modelo más adecuado para cada región estudiada en el estado de Baja California. Se desarrolla un Sistema de Información Bioclimático en tecnología Web [5].

En el 2006, C. Medrano, J. Aguilar, G. Álvarez, J. Arce, S. Moyra y J. Flores presentan la evaluación de las variables climáticas en el Estado de Morelos y un primer diagnóstico de la demanda energética del Estado [6].

Aníbal Figueroa, Victor Fuentes y Carlos Gómez muestran el procesamiento de la información existente de las Estaciones Meteorológicas Automatizadas (EMAs), los métodos de análisis con fines de diseño y las posibilidades de uso que esta nueva información ofrece [7].

En el 2008, Ricardo Gallegos, Nicolás Velázquez, Rafael García, Aníbal Luna y

Gonzalo Bojórquez presentan detalladamente el método para construir un archivo meteorológico típico para la ciudad de Mexicali, B.C. y se aplica a las variables de temperatura de bulbo seco, humedad relativa e irradiancia solar. El procedimiento aplicado reproduce el comportamiento climatológico medio de manera aceptable [8].

En el 2009, Raúl Canto, Ligia Ancona y Adrían Contreras presentan una metodología para la obtención de datos de las variables que afectan la sensación térmica de sitios representativos del sur de México, con el fin de determinar las estrategias de diseño conveniente. Se ejemplifica la metodología aplicándola en Yucatán y se presentan cartas psicrométricas y tablas de los diferentes tipos de clima del estado [9].

Carmen Buerba, Carolina Téllez, Erika Pérez, Claudia Pérez, Pilar Gómez, Javier López, Rafael Magdaleno, Victor Bolaños, Estefanía Alfaro e Iván Hernández presentan tablas con datos climáticos y recomendaciones bioclimáticas para los principales subclimas de México (orientaciones óptimas, criterios de cuándo usar enfriamiento, calentamiento, humidificación o deshumidificación, recomendaciones respecto a los ejes solares y eólicos y recomendadciones en cuanto a qué sistemas constructivos utilizar [10].

En el 2010, Yrelli Soto, Esperanza García y Christopher Heard analizan la vivienda indígena Rarámuri en Chihuahua. Al no encontrar datos climáticos del lugar se optó por buscar un sitio donde existieran Estaciones Meteorológicas Automáticas con características similares de latitud y altitud que permita un análisis de las características de confort térmico de la construcción tradicional y moderna. Se utilizó el software ESP-r para dicho análisis [11].

Referencias

- [1] Guadalupe Alpuche [CIE-UNAM] and Christopher Heard [IMP]. Análisis de datos climatológicos y cálculo de propiedades psicrométricas para el simulador PowerDoe. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 33–37, 2001.
- [2] Victor Fuentes and Manuel Rodríguez [UAM]. Estimación de datos climatológicos con fines de diseño bioclimático. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 43–47, 2001.

- [3] David Morillón [II-UNAM], Ricardo Saldaña, and Ubaldo Miranda [IIE]. Atlas bioclimático de la República Mexicana. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 1–7, 2002.
- [4] Ignacio Martín and Rosana Hernández [CIMAV]. Datos climáticos de cuatro ciudades del estado de Chihuahua, para la simulación de uso de energía en edificaciones utilizando el paquete Trnsys. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 181–185, 2002.
- [5] Ronaldo Inglés and Rafael García [UABC]. El confort y la tecnología informática en el estado de Baja California. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 431–433, 2004.
- [6] C. Medrano [I.T. de Zacatepec], J. Aguilar, G. Álvarez, J. Arce, S. Moya, and J. Flores [CENIDET]. Diagnóstico preliminar de las zonas cálidas y frías para evaluar la demanda energética para vivienda en el Estado de Morelos. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 3–6, 2006.
- [7] Aníbal Figueroa, Victor Fuentes, and Carlos Gómez [UAM]. Análisis y procesamiento de datos de las estaciones automatizadas de SMN con fines arquitectónicos. Memoria de la XXX Semana Nacional de Energía Solar, pages 205–210, 2006.
- [8] Ricardo Gallegos, Nicolás Velázquez, Rafael García, Aníbal Luna, and Gonzalo Bojórquez [UABC]. Construcción de un archivo típico meteorológico para Mexicali, B.C. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–50, 2008.
- [9] Raúl Canto, Ligia Ancona, and Adrián Contreras [UADY]. Metodología para la caracterización de variables climáticas que afectan la sensación térmica en la República Mexicana y determinación de las estrategias correspondientes de diseño. Caso de estudio: Yucatán. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-09, 2009.
- [10] Carmen Buerba, Carolina Téllez, Érika Pérez, Claudia Pérez, Pilar Gómez, Javier López, Rafael Magdaleno, Victor Bolaños, Estefanía Alfaro, and Iván Hernández [UMICH]. Estrategias arquitectónicas por subclimas para la República Mexicana. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–26, 2009.

[11] Yrelli Soto, Esperanza García, and Christopher Heard [UAM]. Problemática para el manejo de datos climáticos en la Sierra Baja Taraumara. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–66, 2010.

4. Confort higrotérmico

El confort higrotérmico se define como el rango de temperatura y humedad relativa en el que la mayoría de individuos de un lugar en específico se sienten más cómodos. La determinación del confort higrotérmico es necesaria para poder diseñar o adecuar espacios que cumplan con las necesidades y deseos de comodidad de los usuarios.

Esta sección se divide en tres subsecciones: metodologías, herramientas y experimentos. En la categoría de metodologías se incluyen los trabajos que proporcionan distintos modelos o enfoques del confort higrotérmico. El apartado de herramientas contiene las publicaciones que aportan métodos prácticos para determinar el rango de confort. Por último, en la parte de experimentos se presentan los casos en donde se evalúa empíricamente el confort higrotérmico en determinadas localidades o edificaciones.

En los simposios de la ANES, del año 2000 al 2010, se han presentado 37 artículos en este tema. Dentro de estas publicaciones, 9 son relativas a metodologías, 8 a herrramientas y 20 a experimentos.

Los grupos de investigación que publicaron más trabajos fueron la Universidad de Colima, encabezada por Gabriel Gómez (6 publicaciones); el Instituto Politécnico Nacional, con Raymundo Mayorga (5); la Universidad Autónoma de Baja California, con Gonzalo Bojórquez y Ricardo Gallegos (4); la Universidad Autónoma Metropolitana, con Hernando Romero y Juan Ambriz (4); y la Universidad de Sonora, con Irene Marincic (4), Manuel Ochoa (4) y Guadalupe Alpuche (3). Otros autores que publicaron en menor medida fueron Federico Poujol y Oscar Reséndiz de la de Universidad Autónoma de Baja California Sur (3); Rafael García (3), Aníbal Luna (3) y Eduardo Vázquez (2) de la UABC; Roberto García, Miriam Arauza y Manuel Rodríguez de la UAM (2); Diego Morales de la FA-UNAM (2); David Morillón del II-UNAM (2); María Pérez y Carmen García de la Universidad Autónoma de Yucatán (2); y Raúl Ruiz de la Universidad de Colima (2).

4.1. Metodologías

En el 2002, Raymundo Mayorga formula y comprueba un modelo de análisis que permite comprender mejor el fenómeno del confort térmico dentro de las edificaciones a partir de una visión holística, para elegir mejor los instrumentos metodológicos existentes a utilizar dentro del diseño arquitectónico [1].

Fernando Olivares, Hernando Romero y Juan Ambriz proponen una metodología para evaluar experimentalmente las condiciones de confort [2].

En el 2003, Raymundo Mayorga y Diego Morales muestran los avances del proyecto de investigación en el cual se propone un modelo holístico para definir el confort térmico en el cual se toman en cuenta los factores bio-psico-sociales de las personas que habitan el edificio en cuestión [3].

En el 2004, Raymundo Mayorga y Diego Morales describen el fenómeno de comodidad térmica desde un enfoque holístico. Muestran diferentes rangos de confort térmico propuestos por diversos autores. Finalmente, plantean una zona de confort térmico para México [4].

Raymundo Mayorga, Juan Ambriz y Hernando Romero identifican las principales variables que definen el modelo de confort térmico holístico. Determinan si las variables medidas en el experimento son significativas y la correlación existente entre las variables de referencia de opinión (alimentación-opinión: cómo se siente) [5].

En el 2006, Raymundo Mayorga y Diego Morales aportan un modelo matemático para calcular el confort térmico con un carácter holístico. Describen los antecedentes en cuanto a los principales modelos matemáticos que abordan la temática de estudio [6].

En el 2007, Gonzalo Bojórquez, Gabriel Gómez, Rafael García, Aníbal Luna y Ricardo Gallegos exponen las diferencias básicas entre las condicionantes involucradas en el confort térmico para el diseño de espacios exteriores e interiores. Presentan una revisión bibliográfica en torno a la percepción del confort térmico, la adaptación térmica humana y el ambiente térmico construido [7].

En el 2008, los mismos autores presentan un análisis sobre el proceso de percepción de la sensación térmica y los efectos que tienen sobre ella el metabolismo, la termorregulación humana, el balance térmico, el ambiente térmico y la adaptación térmica humana. Se concluye que la sensación térmica percibida está influenciada por parámetros de tipo fisiológico y psicológico interdependientes [8].

En el 2009, Roberto García, Iratzio Esquivel y Carlos Ávila proponen extender la zona de confort en climas representativos de México por medio de la aplicación del modelo adaptativo para reducir el uso de equipos de aire acondicionado y el consumo de energía en edificaciones. Indican un ahorro de hasta 45 % [9].

4.2. Herramientas

En el 2002, Oscar Reséndiz, Federico Poujol y Mario Bastida presentan los resultados preeliminares de un estudio para elaborar una carta de confort para la ciudad de La Paz obtenida mediante encuestas [10].

Alfredo Fernández muestra que el modelo empírico propuesto por Fernández-González predice la temperatura de neutralidad de manera más exacta en edificios de oficinas ventilados de manera natural, que el modelo propuesto en el estándar 55-2000R de ASHRAE [11].

En el 2004, David Morillón y Néstor Mesa analizan el alcance de algunas herramientas disponibles para la definición de rangos de confort (Olgyay, Givonni y Fanger). Encuentran que dichos métodos no son aplicables a situaciones en donde la actividad de los ocupantes es deportiva [12].

En el 2006, Raúl Ruiz, Gabriel Gómez y Adolfo Gómez examinan desde el punto de vista adaptativo los diferente factores internos y externos que intervienen en la preferencia térmica de las personas [13].

Miriam Arauza, Manuel Rodríguez y John Evans realizan un estudio comparativo entre distintos métodos gráficos: Carta Bioclimática de V. Olgyay, Carta Psicrométrica de Givoni y los Triángulos de Confort y Estrategias Bioclimáticas de J. Martin Evans. Esta comparación se realiza analizando los climas de Hermosillo, Veracruz y Morelia [14].

En el 2007, Victor Fuentes y Manuel Rodríguez analizan distintos índices de confort térmico para la República Mexicana. Incluyen los métodos fisiológicos de confort de Fanger, el índice de nueva temperatura efectiva, la temperatura efectiva estándar, así como los métodos adaptativos de Humphreys y Nicol, Auliciems, De Dear y Brager. Utilizan la base de datos climáticos de 700 ciudades y muestran varios atlas climáticos del país [15].

Miriam Arauza, Rubén Dorantes y Martin Evans realizan un análisis comparativo entre el instrumento gráfico desarrollado por J. Martin Evans: Triángulos de Comodidad, contra la Carta Psicrométrica de Givoni, para tres ciudades con climas diferentes. Las mayores diferencias se encontraron en el clima cálido-húmedo, por lo que proponen la adaptación del método de Evans para las siguientes etapas de este estudio [16].

En el 2010, Gonzalo Bojórquez, Gabriel Gómez, Aníbal Luna, Ramona Romero y Rafael García hacen una revisión de modelos de confort térmico para exteriores. Este trabajo pretende ser una herramienta de apoyo en la toma de decisiones para la selección adecuada de un modelo de confort para espacios exteriores [17].

4.3. Experimentos

En el 2003, Roberto García presenta un estudio experimental realizado en un laboratorio con ambiente controlado con individuos que habitan un clima típicamente templado. Los resultados muestran que el confort puede alcanzarse a mayores temperaturas, lo que significa un menor consumo de energía [18].

En el 2004, Ricardo Aguayo demuestra que la percepción de la humedad relativa y la velocidad del viento se ven afectadas por el color ambiental de un espacio arquitectónico, siendo mayor el impacto hacia el color rojo (colores cálidos) [19].

Jesús Pérez, Ana Borbón y Ricardo Gallegos monitorean una vivienda de interés social de manera continua, utilizando sistemas automáticos de recolección de datos. Se concluyó que la zona de medición quedó totalmente fuera de la zona de confort de acuerdo con los parámetros de ASHRAE [20].

Leandro Sandoval, Ricardo Pineda y Olimpia Bandala monitorean tres aulas de la Universidad de Colima con el índice Humidex. Las tres aulas presenta confort térmico solamente del 10 % al 18 % del transcurso del año. Se propone la hipótesis de que el bajo desempeño del sistema educativo podría estar ligado a la falta de confort térmico de los espacios [21].

En el 2006, Manuel Ochoa, Irene Marincic y Guadalupe Alpuche presentan los resultados de un estudio de campo realizado en la ciudad de Hermosillo en el desierto de Sonora. Se encuestan a personas sobre su sensación de confort y concluyen que las condiciones ambientales que la mayoría de los habitantes consideran confortables, son casi insoportables para la gente aclimatada a climas templados del centro del país [22].

Irene Marincic, Manuel Ochoa y Antoni Isalgué efectúan mediciones de los principales parámetros climáticos, así como una encuesta sobre la sensación de confort térmico a personas situadas en espacios interiores y exteriores en clima cálido seco (Hermosillo). El objeto es controlar sistemas de aire acondicionados de manera óptima [23].

María Pérez e Irma Martín monitorean las variables de confort higrotérmico y realizan un análisis microbiológico en el ambiente interior de dos salones escolares [24].

Eduardo González, Gaudy Bravo, Rosalinda González, Lesvia Pérez, Axa Rojas, Magalis Gallardo y Elizabeth Tosí presentan un análisis de las condiciones de confort térmico en la VBP-1, una casa prototípica construida bajo criterios bioclimáticos [25].

En el 2007, Oscar Reséndiz, Elizabeth Chávez, Federico Poujol, Alfredo Flores

y David Morillón pretenden determinar la zona de confort de los ocupantes de casas de interés social para la ciudad de La Paz, mediante la medición in situ de temperaturas de bulbo seco, humedad relativa, temperatura de globo y velocidad del aire, y la conducción de entrevistas para evaluar sus sensaciones térmicas. Se observa que la tolerancia es ligeramente mayor que la esperada [26].

Ramona Romero, Gonzalo Bojórquez, Eduardo Vázquez, Aníbal Luna, Ricardo Gallegos, María Corral, Gabriel Gómez y Rafael García evalúan térmica-energéticamente distintos diseños de vivienda económica utilizados regularmente en el clima cálido seco. Se llevaron a cabo encuestas y simulaciones a través de Trnsys 16. Se concluye que el espacio de las viviendas es insuficiente y el sistema de techo es deficiente [27].

Roberto García, Juan Ambriz, Hernando Romero y Julieta Acuña presentan los resultados de pruebas experimentales realizadas en una cámara de ambiente controlado, en torno a la percepción de las condiciones de confort higrotérmico de los ocupantes y su relación con la influencia del movimiento del aire [28].

En el 2008, Raúl Ruiz y Gabriel Gómez exponen los resultados de un estudio de campo realizado de acuerdo al enfoque adaptativo del confort higrotérmico. El estudio se realizó en la ciudad de Colima, la cual tiene un clima tropical sub-húmedo. Los datos encontrados evidencian que las personas que habitan esta localidad manifiestan sensación de confort en condiciones que serían consideradas incómodas de acuerdo a los estándares comúnmente utilizados [29].

José Moreno, Leandro Sandoval y Gabriel Gómez miden la temperatura y humedad relativa de dos viviendas, una de ellas ocupada y la otra no. Los resultados manifiestan diferencias que pueden considerarse significativas, las cuales son causadas por el efecto de la conducta de los usuarios de los espacios en las edificaciones de estudio [30].

Irene Marincic, Manuel Ochoa y Guadalupe Alpuche efectúan un estudio de campo (encuestas), basado en el modelo de confort térmico adaptativo, para conocer las preferencias térmicas de personas aclimatadas a Hermosillo. Los resultados obtenidos en este tipo de estudios permiten diagnosticar, desde el punto de vista térmico, el grado de habitabilidad de los modelos de vivienda económica, cuyo número crece continuamente en todo México [31].

María Pérez, Efraín Cruz y Carmen García estudian el confort térmico del usuario de vivienda de tipo económica situada en clima cálido húmedo (Yucatán) con un muestreo de 65 personas y diferentes métodos de análisis. Se concluye que el diseño actual de la vivienda resulta inapropiado en los periodos de calor [32].

Carmen García, María Pérez y Adolfo Gómez muestran los resultados del análisis del desempeño ambiental de una muestra de viviendas autoproducidas

en un clima cálido húmedo como el de Yucatán. Con base a encuestas, el 60% de los hombres y el 71% de las mujeres calificó a la sensación térmica de las viviendas como inaceptable [33].

Irene Marincic, Manuel Ochoa, Guadalupe Alpuche y Eduardo Vázquez Ilevan a cabo un estudio sobre el confort térmico y uso de la energía en la vivienda económica de siete ciudades mexicanas de clima cálido seco y cálido húmedo. El objetivo es aportar conocimientos para tomar decisiones para disminuir los consumos eléctricos [34].

En el 2009, Federico Poujol, Oscar Reséndiz, David Morillón y Gonzalo Bojórquez presentan los resultados de un estudio que tiene por objetivo determinar las temperaturas de confort. Se encuestaron a 310 personas que habitan viviendas de interés social de la Paz, B.C.S., en los meses de marzo a septiembre. Se recabó información acerca del usuario (sexo, peso, estatura, edad, ropa y actividad mecánica), del equipo de acondicionamiento térmico y de sus sensaciones respecto al ambiente térmico de su vivienda [35].

En el 2010, Érica Correa, Angélica Ruiz y Alicia Cantón analizan cómo el confort térmico es afectado por la modificación de determinadas variables relacionadas con la morfología edilicio-forestal, las propiedades térmicas de los materiales y las caraterísticas forestales [36].

Norma Rodríguez, Jesús Hinojosa, Karl Kohlhof y Simon Tonn evalúan numérica y experimentalmente el confort interno en modelos de cuarto. El cálculo numérico de la transferencia de calor, por convección forzada y libre, se hace mediante simulación con el programa Fluent 6.3. Los resultados son comparados con datos experimentales [37].

Referencias

- [1] Raymundo Mayorga [IPN]. Modelo holístico para analizar el confort térmico del ser humano dentro de los edificios. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 15–20, 2002.
- [2] Fernando Olivares, Hernando Romero, and Juan Ambriz [UAM]. Metodología para el establecimiento de los niveles de confort en los diferentes climas de la República Mexicana. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 113–117, 2002.

- [3] Raymundo Mayorga [IPN] and Diego Morales [FA-UNAM]. El confort térmico del ser humano dentro de los edificios, una visión holística. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 37–42, 2003.
- [4] Raymundo Mayorga [IPN] and Diego Morales [FA-UNAM]. Zona de confort térmico para un caso de población mexicana. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 135–140, 2004.
- [5] Raymundo Mayorga [IPN], Juan Ambriz, and Hernando Romero [UAM]. Determinación experimental de variables de confort térmico con población mexicana. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 141–145, 2004.
- [6] Raymundo Mayorga [IPN] and Diego Morales [FA-UNAM]. Modelos matemáticos para una arquimetría básica en el área del confort térmico del ser humano. Memoria de la XXX Semana Nacional de Energía Solar, pages 151–156, 2006.
- [7] Gonzalo Bojórquez, Gabriel Gómez, Rafael García, Aníbal Luna, and Ricardo Gallegos [Programa Interinstitucional de Doctorado en Arquitectura]. Confort térmico: espacios interiores y exteriores. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–26, 2007.
- [8] Gonzalo Bojórquez, Gabriel Gómez [UCOL], Rafael García, Aníbal Luna, and Ricardo Gallegos [UABC]. Sensación térmica percibida. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–01, 2008.
- [9] Roberto García, Iratzio Esquivel, and Carlos Ávila [UAM]. Viabilidad de extensión de la zona de confort en climas representativos de México con aplicación del método adaptativo. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–56, 2009.
- [10] Oscar Resendiz, Federico Poujul, and Mario Bastida [UABCS]. Carta de confort para la ciudad de la Paz, B.C.S. Memoria de la XXVI Semana Nacional de Energía Solar, pages 79–82, 2002.
- [11] Alfredo Fernández [Center for Energy Research]. Propuesta de un modelo de adaptación para predecir la temperatura de neutralidad en edificios de oficinas ventilados de manera natural con base en los resultados del proyecto de investigación ASHRAE RP-884. Memoria de la XXVI Semana Nacional de Energía Solar, pages 155–160, 2002.

- [12] David Morillón [II-UNAM] and Néstor Mesa [CRICYT]. Confort vs actividad: Estudio experimental y numérico. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 153–158, 2004.
- [13] Raúl Ruiz, Gabriel Gómez, and Adolfo Gómez [UCOL]. Marco conceptual y teórico de los factores que intervienen en la preferencia térmica para determinar estándares locales de confort térmico. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 19–22, 2006.
- [14] Miriam Arauza, Manuel Rodríguez [UAM], and John Evans [U. de Buenos Aires]. Evaluación de la aplicación del método grafico de los triángulos de confort y estrategias bioclimáticas de J. Martin Evans para las condiciones climatológicas dominantes en la República Mexicana. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 79–84, 2006.
- [15] Victor Fuentes and Manuel Rodríguez [UAM]. Análisis de los índices de confort térmico para las condiciones de la República Mexicana. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-23, 2007.
- [16] Miriam Arauza, Rubén Dorantes [UAM], and Martin Evans [U. de Buenos Aires]. Determinación de una variable climatológica para la adecuación y/o modificación del método gráfico de los triángulos de confort y estrategias bioclimáticas de J. Martin Evans, para las condiciones climatológicas dominantes en la República Mexicana. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-34, 2007.
- [17] Gonzalo Bojórquez, Gabriel Gómez [Programa Interinstitucional de Doctorado en Arquitectura], Aníbal Luna, Ramona Romero [UABC], and Rafael García [II-UNAM]. Modelos de confort térmico para espacios exteriores. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–01, 2010.
- [18] Roberto García, Juan Ambriz, and Hernando Romero [UAM]. Pruebas experimentales en una cámara de ambiente controlado para determinar las condiciones de confort higrotérmico en ocupantes. Memoria de la XXVII Semana Nacional de Energía Solar, pages 155–159, 2003.
- [19] Ricardo Aguayo [ITESM]. Nuevas aportaciones de la sinestesia colortemperatura con aplicaciones en arquitectura bioclimática. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 1–5, 2004.

- [20] Jesús Pérez, Ana Borbón [UNISON], and Ricardo Gallegos [UABC]. Evaluación de las consideraciones de comodidad térmica, de una vivienda de interes social en Hermosillo, Sonora. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 77–79, 2004.
- [21] Leandro Sandoval, Ricardo Pineda [UCOL], and Olimpia Bandala [Tecnológico de Colima]. Aplicación del índice Humidex para el estudio de las condiciones de confort térmico en un edificio dedicado a educación. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 159–163, 2004.
- [22] Manuel Ochoa, Irene Marincic, and Guadalupe Alpuche [UNISON]. Confort térmico en espacios exteriores en climas extremos: el clima desértico. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 115–119, 2006.
- [23] Irene Marincic, Manuel Ochoa [UNISON], and Antoni Isalgué [U. Politécnica de Cataluña]. Confort térmico adaptativo en clima muy cálido seco. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 121–125, 2006.
- [24] María Pérez and Irma Martín [UADY]. Calidad del ambiente interior en edificios escolares. Memoria de la XXX Semana Nacional de Energía Solar, pages 157–160, 2006.
- [25] Eduardo González, Gaudy Bravo, Rosalinda González, Lesvia Pérez, Axa Rojas, Magalis Gallardo, and Elizabeth Tosí [U. de Zulia]. Dos estrategias de diseño en la VBP-1: análisis de condiciones de confort térmico. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 241–246, 2006.
- [26] Oscar Reséndiz, Elizabeth Chávez, Federico Poujol, Alfredo Flores [UABCS], and David Morillón [II-UNAM]. Análisis de las sensaciones térmicas de los ocupantes de viviendas de interés social en La Paz, BCS. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-17, 2007.
- [27] Ramona Romero, Gonzalo Bojórquez, Eduardo Vázquez, Aníbal Luna, Ricardo Gallegos, María Corral, Gabriel Gómez [UABC], and Rafael García [UCOL]. Energía y confort térmico en la vivienda económica en Mexicali, Baja California, México: avances de investigación. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–37, 2007.

- [28] Roberto García, Juan Ambriz, Hernando Romero, and Julieta Acuña [UAM]. Percepción de las condiciones de confort higrotérmico en relación con el flujo de aire en la cámara de ambiente controlado. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–38, 2007.
- [29] Raúl Ruiz and Gabriel Gómez [UMICH]. Rango de confort térmico y de humedad en la ciudad de Colima. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–11, 2008.
- [30] José Moreno [I.T. de Colima], Leandro Sandoval, and Gabriel Gómez [UCOL]. La influencia de los usuarios en el desempeño térmico de las viviendas en Tecomán, Colima. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-07, 2008.
- [31] Irene Marincic, Manuel Ochoa, and Guadalupe Alpuche [UNISON]. Confort térmico en viviendas económicas en Hermosillo, Sonora. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–17, 2008.
- [32] María Pérez, Efraín Cruz, and Carmen García [UADY]. Evaluación de confort térmico del usuario de vivienda económica en clima cálido húmedo. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–22, 2008.
- [33] Carmen García, María Pérez [UADY], and Adolfo Gómez [UCOL]. Habitabilidad y desempeño de la vivienda autoproducida en un clima cálido húmedo de Mérida, Yucatán. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–33, 2008.
- [34] Irene Marincic, Manuel Ochoa, Guadalupe Alpuche [UNISON], and Eduardo Vázquez [UABC]. Perfil del usuario de la vivienda económica en Hermosillo y patrones de consumo de energía eléctrica. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–10, 2009.
- [35] Federico Poujol [UABCS], Oscar Reséndiz, David Morillón [II-UNAM], and Gonzalo Bojórquez [UABC]. Análisis del confort térmico mediante encuestas en la vivienda económica de la ciudad de La Paz, B.C.S. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–31, 2009.
- [36] Érica Correa, Angélica Ruiz, and Alicia Cantón [INCIHUSA-CONICET]. Estrategias de mitigación de la isla de calor urbana. Impacto sobre las condiciones de confort de los espacios abiertos en ciudades de clima semidesértico.

- *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-58, 2010.
- [37] Norma Rodríguez, Jesús Hinojosa, Karl Kohlhof, and Simon Tonn [UNI-SON]. Numerical and experimental study of indoor comfort in model rooms under different climatic conditions. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–82, 2010.

5. Diseño bioclimático integral

El concepto de diseño bioclimático integral se refiere a la incorporación de criterios y elementos bioclimáticos, como una adecuada orientación o muros dobles, desde la etapa de diseño de la edificación. Tiene la finalidad de aprovechar y adaptarse a las condiciones climáticas de cierto lugar para reducir el consumos de energía y/o mejorar el confort higrotérmico.

Esta sección se divide en cuatro subsecciones: criterios, herramientas, casos de estudio y prototipos. En el apartado de criterios se incluyen los trabajos que proporcionan conceptos y estrategias de diseño bioclimático para las edificaciones. En la categoría de herramientas se presentan los artículos que aportan un instrumento para el diseño bioclimático, como metodologías, modelos matemáticos y utensilios. La parte de casos de estudio incluye ejemplos reales de construcciones que se han diseñado bajo un concepto bioclimático y en las que se monitera el desempeño térmico. Por último, en la subsección de prototipos se muestran los trabajos que aportan propuestas de diseño bioclimático de una edificación en particular.

Se han presentado 98 publicaciones en los congresos de la ANES, del 2000 al 2010, relativos a este tema. Dentro de estas publicaciones 34 se encuentran dentro de la subsección de criterios, 40 dentro de herramientas, 11 en casos de estudio y 13 en prototipos.

Los grupos que presentaron más trabajos son el Instituto de Ingeniería de la UNAM, con David Morillón (9 publicaciones); la Universidad de Sonora, con Manuel Ochoa (9) e Irene Marincic (7); la Universidad de Baja California, con Aníbal Luna (6) y Gonzalo Bojórquez (4); la Facultad de Arquitectura de la UNAM, con Diego Morales (4); y en menor medida, Ricardo Gallegos y María Corral de la UABC (3); Guadalupe Alpuche y Rafael Cabanillas de la Unison (3); Julieta Acuña, Victor Fuentes, Gloria Castorena y Aníbal Figueroa de la UAM (3); Oscar Reséndiz y Federico Poujol de la Universidad Autónoma de Baja California Sur (3); Eduardo González de la Universidad de Zulia (Venezuela) (3); María Pérez de la Universidad Autónoma de Yucatán (3); y Raymundo Mayorga de Instituto Politécnico Nacional (3).

5.1. Criterios

En el 2000, María Corral encuentra que aplicando estrategias usuales de adecuación térmica y ambiental, es posible reducir más del 50 % la carga anual de enfriamiento [1].

Manuel Ochoa y Jaume Roset dan conclusiones sobre la conveniencia de utilizar la vegetación como un instrumento para el control microclimático en espacios exteriores urbanos [2].

En el 2001, Anabel Negrete y Diego Morales tratan de la problemática energética del sector residencial y la manera en que la arquitectura bioclimática puede contribuir. Proponen métodos pasivos de climatización como doble muro o protección solar [3].

Manuel Ochoa, Sandra Jáuregui, Rocío Ontiveros e Irene Marincic demuestran que el diseño adecuado de los espacios exteriores tiene un impacto positivo en su confort y en el de los edificios a los que rodean [4].

Ana Velasco y María Méndez proponen una visión de la arquitectura, la cual no se enfoque solamente a lo económico y lo masivo, sino al bienestar físico y psicológico de las personas [5].

Roberto García y Miguel Tirado presentan los criterios de diseño bioclimático para el caso de la Zona Metropolitana de la Ciudad de México (definición de zona de confort, orientación y control solar, cálculo y balance térmico, sistemas híbridos de calentamiento de agua, sistemas de captación de aguas pluviales) [6].

En el 2002, María Pérez y Lilia Pacheco analizan las variables de temperatura y humedad relativa de un año típico con el fin de establecer las estrategias de diseño [7].

Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos y Akemi Hotta muestran la variación en el requerimiento máximo de enfriamiento por el tipo de acabado de exteriores como color y rugosidad [8].

Argelia Crisóstomo y David Morillón calculan los ángulos óptimos para dispositivos de control solar para diversas orientaciones en Chetumal, Quintana Roo [9].

Jesús Chávez y David Morillón proponen estrategias de climatización para cada época, así como recomendaciones de diseño arquitectónico y urbano (deshumidificación, ventilación, ubicación, protección solar) para la ciudad de Veracruz, Veracruz [10].

Oscar Resendiz, Marco Velázquez, Federico Poujol e Israel Soria plantean el uso de tabique de barro recocido como material regional, el uso de bóvedas de cañón corrido (utilizando el mismo material) y promueven la autoconstrucción; todo esto para disminuir los presupuestos de obra [11].

En el 2003, Aníbal Luna, Akemi Hotta y Gonzalo Bojórquez realizan un análisis del periodo de verano en Mexicali a partir de las temperaturas y humedades relativas promedio, basándose en la carta climática propuesta por Givoni. Aportan estrategias de diseño bioclimático específicas para cada mes [12].

En el 2004, Manuel Rodríguez, Yolanda Neri y Victor Fuentes hacen un análisis del impacto que tiene el uso desmedido de vidrios en la arquitectura. Se muestra las desventajas de esta práctica y se propone tomar consciencia de ello [13].

En el 2005, Cristina Rodríguez, Miguel Fragoso y Diego Corcho proponen soluciones en las que se usen energías renovables y que contemplen los conceptos de la arquitectura bioclimática, haciendo uso de los materiales de la región con el fin de disminuir los costos de operación de la vivienda e incrementar la calidad de vida de los habitantes [14].

En el 2006, Ricardo Aguayo pone en manifiesto la importancia del confort acústico en la arquitectura bioclimática. Da un panorama general de las intervenciones arquitectónicas que determinan el nivel de confort sonoro [15].

Gabriel Castañeda, Carlos Cruz, Luis Jiménez y María de Lourdes Carpy hacen propuestas arquitectónicas adaptadas al contexto de la Reserva de la Biósfera la Sepultura (Chiapas), con el fin de mejorar la calidad de la vivienda de la población en estudio [16].

En el 2007, Rosalía Manríquez y Diego Morales presentan un cuadro comparativo de algunas estrategias de diseño bioclimático. Este cuadro incluye los lineamientos de la Guía Conafovi, y de tres investigadores: Olgyay, Mazria y Manríquez-Morales. Tratan criterios como orientación, acabados, materiales, dimensiones, ventilación, iluminación, etc. [17].

Francisco Sol, Alonso Fernández y Pedro Montes proponen estrategias bioclimáticas para la ciudad de Oaxaca que contemplan la climatización por medios pasivos: orientación, calentamiento solar y ventilación natural principalmente. Resaltan que al relacionar estas estrategias con el uso horario del espacio se logra un diseño muy puntual para cada proyecto [18].

Marcos González y Raymundo Mayorga plantean determinar de forma cuantitativa la diferencia de ganancia térmica entre una forma y otra, tales como superficies planas con diferentes inclinaciones, y superficies con diferentes tipos de curvaturas (cónicas), basándose en las propiedades matemáticas de dichas formas, en relación con la geometría solar [19].

Ana Velasco presenta un estudio de gráficas solares para el diseño de la vivienda actualmente ofertada en la ciudad de Morelia. En resumen, se recomienda la vivienda de una planta, diseñada en espejo, en terreno independiente con frente de 6 mts hacia el poniente, con cochera hacia el sur, con cocina al oriente y con patio-jardín posterior [20].

En el 2008, Juan Bárcenas, Evelyn Pérez e Inocente Bojórquez cuantifican la reducción en la transferencia de calor por conducción al interior de una edificación a través de la techumbre, variando materiales, orientación e inclinación; aplicando

los conceptos de escenario climático y tipología de la edificación para realizar una adaptabilidad energéticamente eficiente a un clima tropical cálido húmedo [21].

Rosalía Manríquez, Jorge Wolpert, Sergio Cocoletzi, Raúl Figueroa y Marcos Rojas determinan el beneficio que tienen las edificaciones bioclimáticas, considerando factores ambientales, orientaciones y materiales; haciendo uso eficiente de la energía, los recursos y las tecnologías sustentables; midiendo el impacto al medio ambiente y la economía del usuario. Presentan algunas recomendaciones bioclimáticas para las construcciones residenciales [22].

En el 2009, Hiriam Díaz e Inocente Bojórquez definen la orientación e inclinación de techumbres óptimas para el ahorro de energía en la vivienda ubicada en el clima cálido húmedo. Los cálculos se realizaron a través del software "VIVE-2" creado en la Universidad de Quintana Roo, con ocho diferentes orientaciones y cuatro ángulos de inclinación. Se concluye que la peor inclinación fue la de 0° y la mejor orientación para el caso de estudio fue sur [23].

Raymundo Mayorga y Marcos González estudian analítica y experimentalmente cómo se distribuye la energía proporcionada por la radiación solar en función de la configuración geométrica de la envolvente. Se analizan cuatro diferentes formas: cubo, pirámide, bóveda y cúpula. Se encuentra que las superficies planas permiten mayor ganancia térmica (y mayores pérdidas a su vez), mientras que la cúpula semiesférica registra la menor ganancia térmica [24].

Carmen Buerba, Carolina Téllez, Erika Pérez, Claudia Pérez, Pilar Gómez, Javier López, Rafael Magdaleno, Victor Bolaños, Estefanía Alfaro e Iván Hernández presentan tablas con datos climáticos y recomendaciones bioclimáticas para los principales subclimas de México (orientaciones óptimas, criterios de cuándo usar enfriamiento, calentamiento, humidificación o deshumidificación, recomendaciones respecto a los ejes solares y eólicos y recomendaciones en cuanto a qué sistemas constructivos a utilizar [25].

Daniel Solís simuló a través de DesignBuilder el efecto del uso de aislamiento térmico y otras técnicas bioclimáticas en una vivienda económica en 6 ciudades con clima cálido-seco. Se determinó que el uso de aislamiento redujo el consumo eléctrico en el caso climatizado, pero fue contraproducente en el caso no climatizado. Por otro lado, aumentar la altura de la losa mejoró el confort, pero fue contraproducente en el caso climatizado [26].

Oscar Reséndiz, Federico Poujol, David Morillón, Luis Fernández y Aníbal Luna evalúan distintas estrategias de confort térmico y ahorro energético mediante simulaciones en Trnsys 16. Se recomienda: aislar techo y ciertos muros (dependiendo de la orientación), poner ventanas en la parte superior de los muros, así como sombreadores en caso de requerirse, elegir la mejor orientación de

la casa, elegir plantas que otorguen sombra y consuman poca agua, dejar alturas mínimas de 3m para techos [27].

En el 2010, Inocente Bojórquez y Annel Cardeña establecen criterios para la construcción de vivienda energéticamente eficiente en el clima cálido-subhúmedo. Se revisan normas nacionales e internacionales, así como el comportamiento térmico de ocho materiales y se hizo un análisis del dimensionamiento para las áreas habitables [28].

Irene Marincic, Manuel Ochoa y Guadalupe Alpuche estudian los factores (arquitectónicos y ocupacionales) que impactan el consumo de energía eléctrica en viviendas económicas. Se tiene por objeto dar indicios de cómo diseñar mejor las viviendas de bajo costo para lograr condiciones más adecuadas y disminuir el consumo eléctrico [29].

Alma García, Victor Fuentes e Irene Marincic establecen criterios para la optimización del consumo energético en la vivienda, basados en estrategias de climatización pasiva y selección correcta de materiales: control solar, inercia térmica y ventilación selectiva. Se evalúan estas propuestas por medio de simulación digital, comparándolas contra una vivienda convencional [30].

Daniel Solís propone estrategias simples de diseño bioclimático y las simula por medio de DesignBuilder para analizar el efecto individual de cada técnica sobre el confort en caso de no contar con climatización, y sobre el consumo anual de energía eléctrica en caso de contar con ella [31].

Araceli Morales y David Morillón analizan el comportamiento térmico de una vivienda de interés social, según la orientación y geometría de las ventanas, para la ciudad de Chilpancingo, Guerrero. El cálculo de transferencia de calor por conducción y radiación se basa en lo estipulado por la NOM-020-ENER [32].

Raymundo Mayorga y Marcos González comprueban cuantitativamente si la geometría de la envolvente es una variable de control térmica, por medio de mediciones de temperatura dentro de cuatro modelos tridimensionales con diferenes formas geométricas. Se concluye que las superficies curvas presentan menor ganancia térmica que las planas [33].

Roberto García y Melchor Fernández presentan estrategias de diseño bioclimático para climas cálido-secos, con el fin de proporcionar ahorro de energía y confort [34].

5.2. Herramientas

En el 2000, David Morillón presenta una metodología para el diseño bioclimático donde se tienen que tomar en cuenta los requisitos impuestos por el tipo de uso del edificio y el lugar donde se ubicará el mismo [35].

Jaume Roset, Irene Marincic y Manuel Ochoa exponen un análisis de diferentes tipos de modelos de evaluación en los edificios, relacionados con el funcionamiento térmico de los mismos [36].

María Pérez, Jorge Salomón y Alejandro Lazcano muestran una metodología para el diagnóstico y tratamiento de edificios con el Síndrome del Edificio Enfermo donde se presentan síntomas en los usuarios como dolor de cabeza, frío/calor, somnolencia, entumecimiento, etc. [37].

Victor Fuentes y Manuel Rodríguez presentan una propuesta para la sistematización del proceso de diseño bioclimático, particularmente en su etapa analítica [38].

Néstor Mesa, José Cortegoso y Carlos Rosa describen un método gráfico computacional que permite obtener perspectivas de la incidencia del sol sobre cada fachada para cualquier hora y día [39].

Antonio Urbano, Yasuhiro Matsumoto, Jaime Aguilar y René Asomoza muestran una herramienta para el diseño bioclimático: las trayectorias solares anuales mediante gráficas cartesianas [40].

Rafael Cabanillas, Jesús Pérez, Saúl Robles y Héctor Villa presentan el desarrollo de un sitio interactivo en Internet que pretende servir de apoyo para los cálculos básicos de control de asoleamiento en viviendas y edificios [41].

En el 2001, Guadalupe Alpuche y Christopher Heard muestran una metodología para la ordenación, análisis y cálculo de datos climatológicos, así como propiedades psicrométricas del aire, necesarios para completar un archivo de datos de entrada para el simulador PowerDoe [42].

Victor Fuentes y Manuel Rodríguez muestra los métodos matemáticos más comunes que permitan estimar los datos climatológicos básicos necesarios para el diseño bioclimático [43].

En el 2002, María Pérez, Manuel Herrera y A. Oliva desarrollan un simulador solar cuya función es la de estudiar el comportamiento térmico de una techumbre en condiciones de laboratorio [44].

Manuel Ochoa, Irene Marincic y Héctor Villa presentan CONFORT-EX 1.0, que es la primera versión de una herramienta informática destinada a diseñadores de espacios exteriores [45].

Miguel Arzate y Diego Morales proponen una metodología para el diseño bioclimático integral. Analizan el confort térmico de una casa de interés social en Querétaro y proponen estrategias de diseño [46].

David Mejía y David Morillón presentan un análisis comparativo de los valores de radiación solar obtenidos con diversos métodos [47].

Guillermo de la Paz propone un procedimiento metodológico complementario (lista de chequeo bioclimático) para la formación del arquitecto en la disciplina del Acondicionamiento Ambiental [48].

María Corral, Aníbal Luna, Ricardo Gallegos y Teresita Verdugo definen un método de evaluación de técnicas de adecuación ambiental por simulación y experimentación [49].

En el 2003, Irene Marincic, Manuel Ochoa y Antonio del Río presentan un método para caracterizar el comportamiento térmico en los edificios, con pocos parámetros y mediante cálculos simples. Se propone un filtro de correlación asociado a este modelo que pueda filtrar variables no correlacionadas en la respuesta térmica y mantener las que tengan una correlación relevante [50].

Jesús Pérez, Roberto García, Rafael Cabanillas y Fernando Hinojosa presentan un modelo matemático simplificado de balance térmico basado en la admitancia de los materiales y reportado por Szokolay en 1984. Se comprueba mediante Trnsys y mediciones in situ [51].

En el 2004, Martha Canales y Christopher Heard exponen de manera simplificada un conjunto de procedimientos necesarios para la elaboración de un archivo binario adecuado al formato requerido por los programas de DOE [52].

Eduardo Vázquez diseña en la Universidad Autónoma de Baja California un programa computacional con el objetivo de estudiar el asoleamiento y sombreado en ventanas [53].

Ignacio Martín y Teresa Alarcón describen las metodologías que a lo largo de las últimas cuatro décadas se han desarrollado para la estimación de las cargas térmicas en edificaciones. Se dan recomendaciones sobre la pertinencia de su utilización para fines de la NOM-008-ENER-2001 [54].

En el 2005, Alejandro Correa y David Morillón analizan numéricamente las variables geométricas de la ventana para obtener la optimización de la energía solar disponible en la Ciudad de México, a fin de ofrecer una herramienta para el diseño y evaluación de las mismas [55].

En el 2006, Héctor López y Esperanza García presentan un estudio del cálculo del volumen vegetal útil para disminuir la temperatura y aumentar la humedad relativa a través de la evotranspiración [56].

Luis Fernández, Norberto Chargoy y Miguel Porta presentan las ecuaciones y el procedimiento para resolverlas para analizar el ahorro de energía en viviendas cuando se emplean estrategias bioclimáticas [57].

Victor Fuentes, Antonio Abad, Aníbal Figueroa, Jesús Hernández y Roberto García muestran el proceso de diseño y construcción de un heliodón, así como sus ventajas y desventajas. Esta herramienta permite imaginar a los estudiantes

de manera clara el recorrido del sol a lo largo de la bóveda celeste y con ello evaluar proyectos arquitectónicos [58].

Alejandra Zermeño y David Morillón presentan una metodología para identificar los elementos de adecuación bioclimática en la arquitectura vernácula. Utilizan esta tecnología aplicándola sobre algunas viviendas en la ciudad de Chiapa de Corzo, Chiapas [59].

Carlos Quirós, Rosalinda González, Lesvia Pérez y Eduardo González diseñan y construyen un heliógrafo experimental para el registro de las horas de brillo solar efectivo [60].

En el 2007, Alejandro Mesa, Mariela Arboit y Carlos de la Rosa desarrollan una metodología que permite calcular el porcentaje de incidencia de cada componente de radiación solar potencialmente disponible sobre un plano vertical o inclinado, a partir del análisis de imágenes digitales; con el fin planificar el crecimiento urbano en localidades como Mendoza, Argentina [61].

Miguel Gijón, Gabriela Álvarez, Jorgue Aguilar, Jesús Xamán, Efráin Sima y Jason Flores realizan un análisis comparativo entre los resultados de la demanda energética obtenidos mediante dos métodos: Grados-Día y simulación por Trnsys. Se concluye que el método Grados-Día produce buenos resultados y se proporciona además un método (por medio de regresión lineal) para ajustar los resultados a los de simulación por Trsnsys [62].

Irene Marincic y Antonio del Río analizan la precisión de un modelo de red neuronal para la predicción de temperaturas interiores de un edificio, a partir las temperaturas exteriores. Se plantea una red de tres neuronas, ubicadas en dos capas. Se compara con otro método desarrollado por los autores, el de la "Función-Respuesta". Los resultados muestran que el modelo de redes neuronales ofrece grandes posibilidades para mejorar la precisión en la predicción [63].

Juan Bárcenas e Inocente Bojórquez diseñan una metodología para el estudio de ganancias térmicas a través de la techumbre, mediante nomogramas y a partir de los valores de la radiación solar incidente y el ángulo de incidencia solar. Se aplicó esta metodología a un experimento para diferentes impermeabilizantes: dos a base de manto prefabricado tipo SBS y dos a base de membranas elastoméricas [64].

Carmen García y María Pérez diseñan una estrategia de acopio de datos para la toma de decisiones, en cuanto a confort humano y desempeño ambiental, en la vivienda autoproducida en Mérida, Yucatán. Presentan además una breve historia de la arquitectura bioclimática y de la autoconstrucción en México [65].

Eduardo Elizondo y Raymundo Mayorga plantean determinar la relación existente entre los vectores de velocidad y dirección del viento, y velocidad de la

lluvia, a partir de un modelo numérico simple, para así conocer el ángulo en el plano vertical (x, z) y dirección en el plano horizontal (x, y) incidentes de la lluvia conducida por viento, para determinar cuál es la orientación óptima de edificios, en función de la misma [66].

Manuel Ochoa y Guadalupe Alpuche exponen una propuesta para la evaluación de la habitabilidad del espacio exterior en clima cálido-seco, con base en modelos analíticos de confort, mediciones experimentales de los parámetros ambientales y encuestas aplicadas a los usuarios. Se presenta como una herramienta de diseño para proyectar espacios exteriores más habitables [67].

En el 2008, Agustín Torres y David Morillón estiman el valor de referencia de la evotranspiración para el techo verde de una construcción tipo residencial ubicada en el Distrito Federal. Para esto utiliza el método FAO Penman-Monteith y se basa en las variables climáticas, factores de cultivo, manejo y condiciones ambientales [68].

En el 2009, Mariluz Arroyo y Diego Morales muestran una metodología para el diseño de espacios térmicamente equilibrados a través del análisis de los factores personales, ambientales y espaciales de una edificación de departamentos en clima cálido-húmedo; con el fin de evaluar su comportamiento térmico de manera cuantitativa a través de ecuaciones de calculo térmico, para posteriormente dar propuestas de diseño en relación a la mitigación de calor en el interior [69].

Raúl Canto, Ligia Ancona y Adrián Contreras presentan una metodología para la obtención de datos de las variables que afectan la sensación térmica de sitios representativos del sur de México, con el fin de determinar las estrategias de diseño conveniente. Se ejemplifica la metodología aplicándola a Yucatán y se presentan cartas psicrométricas y tablas de los diferentes tipos de clima del estado [70].

En el 2010, Iván Oropeza y David Morillón presentan el programa de simulación energética Energy Plus. Muestran dos casos para ejemplificar su modo de uso. Se mencionan sus ventajas y desventajas en comparación con otros programas de simulación. Los resultados obtenidos confirman que este programa es uno de los mejores en su ramo [71].

Agustín Torres e Iván Oropeza comparan los resultados obtenidos al utilizar Ecotec y Energy Plus. Se simula el comportamiento térmico del edificio residencial Torre Maple en la Ciudad de México [72].

Victor Fuentes presenta a los Grados-Día como herramienta para definir las estrategias de diseño, los requerimientos de climatización y por lo tanto la demanda energética de una edificación. Los Grados-Día son la relación de la temperatura exterior con respecto a una temperatura base [73].

Juan Rodriguéz presenta el diseño de un dispositivo que tiene la finalidad de determinar de forma manual la Altura y Azimut del sol [74].

5.3. Casos de estudio

En el 2000, Gonzalo Bojórquez, Ricardo Gallegos y Aníbal Luna muestran cuantitativamente cómo una vivienda diseñada con estrategias de adecuación ambiental tiene un requerimiento de climatización menor que aquélla donde su diseño no considera el clima donde se proyect [75].

Adolfo Iriarte, Graciela Lesino y César Matías describen los aspectos constructivos de una casa de vegetación, así como los resultados térmicos y agronómicos [76].

En el 2003, Oscar Reséndiz, Federico Poujol, Alflredo Flores, Marco Velásquez e Israel Soria plantean la autoconstrucción como alternativa para bajar los costos y sobre todo para dar más libertad al usuario de tener una vivienda más amplia. Se realizaron pruebas con termopares comparando a la vivienda propuesta contra una vivienda convencional [77].

En el 2005, María Corral presenta el comportamiento térmico de las técnicas de adecuación ambiental aplicadas a un prototipo de vivienda popular (aleros, pórtico, pergolado con 35° que bloquea la radiación sólo en verano, doble techo, aislante de poliestireno en techo y paredes este y oeste). Se monitorea experimentalmente midiendo temperaturas superficiales [78].

En el 2006, Gabriel Gómez y Armando Alcántara evalúan el desempeño térmico de una casa localizada en la ciudad de Colima, diseñada con principios bioclimáticos como ventilación natural e inducida, sombreado solar e inercia térmica de la envolvente [79].

José Mercado, Laura Mercado y Manuel Ochoa analizan una casa habitación diseñada y construida bajo el concepto bioclimático. Se evaluó el comportamiento térmico concluyendo que los resultados fueron satisfactorios [80].

Eduardo Vázquez, Gaudy Bravo, Rosalinda González, Lesvia Pérez, Axa Rojas, Magalis Gallardo, Elizabeth Tosí y Rafael Falcón realizan un estudio del comportamiento térmico de la VBP-1, una casa prototípica construida bajos criterios bioclimáticos. Se analizan las temperaturas características, el factor decremental y el retraso térmico [81].

En el 2008, Carlos Romo y Héctor Ferreiro muestran una casa construida en el Estado de México bajos criterios bioclimáticos, la cual logra mantener la temperatura dentro de los límites de confort y se ahorra \$14,825 en gas al año debido al sistema de calentamiento de agua integrado [82].

Julieta Acuña, Rubén Dorantes y Jesús Mota monitorean durante nueve meses dos viviendas, una convencional y otra construida bajo principios bioclimaticos, en el estado de Zacatecas. La vivienda bioclimática presenta un mejor desempeño térmico [83].

En el 2009, los mismos autores realizan un análisis comparativo entre una vivienda convencional y una diseñada con principios bioclimáticos. Se evaluán tres aspectos: confort higrotérmico, eficiencia energética y rentabilidad económica. Se concluye proponiendo algunas recomendaciones de diseño para la localidad de Guadalupe, Zacatecas [84].

En el 2010, Enrique Caldera presenta tres viviendas bioclimáticas construídas en Guanajuato, con captación y almacenamiento de agua de lluvia, autoabastecimiento eléctrico con energía solar y eólica, iluminación natural, calefacción y calentamiento de agua con energía solar y respaldo de biocombustibles, tratamiento biológico de residuos orgánicos y aguas residuales que se destinan al riego de árboles frutales. El objetivo de esta Ecoaldea es demostrar que existen modos alternativos de vida [85].

5.4. Prototipos

En el 2001, Irene Marincic, Manuel Ochoa y Rafael Cabanillas presentan una evaluación térmica preeliminar de un prototipo para construcciones de escuelas [86].

Guillermo Harada y David Morillón presentan el diseño de un mariposario acondicionado bioclimáticamente para mantener las condiciones climática óptimas para la conservación y reproducción de las mariposas. Proponen estrategias bioclimáticas como parteluces, chimeneas de deshumidificación, sistemas de captación de calor, etc. [87].

En el 2003, Aníbal Figueroa y Gloria Castorena presentan un modelo de vivienda bioclimática construida a base de madera. Esta casa cuenta con un sistema de captación de agua pluvial y de deshecho, un sistema híbrido de calentamiento de agua con colector solar plano de cobre, así como un sistema de calentamiento de bajo consumo de energía que funciona a través de una cámara de aire en el techo auxiliado con ventilación mecánica [88].

Roberto Calderón y Jannett Algrávez describen un caso de investigación aplicada y la fase de diseño y construcción de una vivienda. Se plantean varias estrategias de eficiencia energética (eje térmico, masa térmica, iluminación natural, efecto Venturi) [89].

En el 2005, Gonzalo Bojórquez, Aníbal Luna, Edgar Cota y Javier Espinoza desarrollan un proyecto arquitectónico para un caso real, utilizando métodos bioclimáticos. Se evalúa la carga térmica por medio del programa computacional CalTer y el asoleamiento de las ventanas a través de SolarTool [90].

En el 2007, Julieta Acuña y Gloria Castorena realizan un proyecto arquitectónico que responde a las condiciones climáticas de Zacatecas. Se evalúa un modelo a escala por medio del heliodón y de la geometría solar con la Proyección Ortogonal. Los criterios bioclimáticos aplicados son: orientación SE de la fachada para mayor incidencia solar, configuración compacta, inercia térmica de muros sin colindancia a través de un mayor espesor, doble acristalamiento de ventas e invernadero hacia el sur [91].

Elide Staines y Javier Terrazas proponen estrategias de diseño para lograr un equilibrio térmico interior en una vivienda prototípica ubicada al norte de Chihuahua. Algunas de las estrategias son: aprovechamiento de luz y ventilación natural, recolección de aguas servidas y pluviales, utilización de adobe y una torre central de ventilación [92].

Gloria Castorena y Aníbal Figueroa presentan un diseño bioclimático para una cafetería en Tepotzotlán, Estado de México. Realizan simulaciones sobre modelos físicos en heliodón y túnel de viento. Se plantea el eje térmico con orientación sur, para mayores aportes de radiación directa, mientras que en el poniente se recurre a la masividad de muros con el fin de obtener ganancias indirectas. Se proponen además una serie de ecotecnologías, como recolección de agua o mingitorios secos [93].

En el 2008, Javier Terrazas y Elide Staines describen el diseño de una casa ubicada al norte de Chihuahua para el logro del confort y la eficiencia energética, por medio de iluminación y ventilación natural [94].

En el 2009, R. Espinoza, G. Saavedra, F. Huaylla y A. Gutarra diseñan ambientes de confort en dos viviendas alto andinas. Por medio de simulaciones, se identifican y calculan los flujos de calor producidos en el interior de ellas y se proyecta el mejoramiento térmico correspondiente. Se utilizan métodos como invernaderos, claraboyas y aislamiento de techos y pisos [95].

Glacir Fricke, Rosana Soares, Jane Tasinari y Gabriel Castañeda proponen la edificación de viviendas de interés social construidas a base de bloque de tierra comprimida, con saneamiento de agua y calefacción por sistema de energía solar. Se construye una casa muestra en Brasil [96].

Manuel Ochoa, Guadalupe Alpuche, Irene Marincic y Julio Marcor plantean las pautas de diseño del proyecto del Hospital General de Caborca, Sonora para mejorar la eficiencia energética y el confort térmico y lumínico; proponen la

integración de fuentes renovables de energía [97].

En el 2010, María Herrera, Emiliano Franco y Germán Cordero presentan un proyecto para una terminal de ómnibus en Argentina. Se trata de un edificio vanguardista que utiliza tecnologías innovadoras (ETFE: Etil-Tetra-Flúor-Etileno y losa PRENOVA) entro otras estrategias de diseño bioclimático [98].

Referencias

- [1] María Corral [UABC]. Evolución de criterios de adecuación ambiental para la vivienda popular de sectores de bajos ingresos al clima cálido extremo de Mexicali, B.C. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 89–94, 2000.
- [2] Manuel Ochoa [UNISON] and Jaume Roset [U. P. de Cataluña]. Influencia de la vegetación en el balance energético de los espacios exteriores urbanos: análisis y evaluación de sus efectos microclimáticos. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 127–132, 2000.
- [3] Anabel Negrete and Diego Morales [FA-UNAM]. Estrategias de acondicionamiento natural para el ahorro de energía en el sector residencial. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 11–15, 2001.
- [4] Manuel Ochoa, Sandra Jáuregui, Rocío Ontiveros, and Irene Marincic [UNI-SON]. El uso de los espacios exteriores en climas áridos: Una propuesta bioclimática para el campus centro de la Universidad de Sonora. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 49–53, 2001.
- [5] Ana Velasco and María Méndez [UMICH]. Análisis bioclimático en la vivienda de interés social. Caso Morelia, Michoacán de Ocampo. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 95–109, 2001.
- [6] Roberto García and Miguel Tirado [UAM]. Criterios de diseño bioclimático orientados a promover el desarrollo sustentable en la arquitectura. Memoria de la XXV Semana Nacional de Energía Solar, pages 149–154, 2001.
- [7] María Pérez and Lilia Pacheco [UADY]. Análisis climático enfocado hacia el diseño arquitectónico en la ciudad de Mérida. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 9–13, 2002.

- [8] Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos, and Akemi Hotta [UABC]. Evaluación del efecto de carga térmica, por color en muros y albedo de superficies exteriores, en una vivienda de Mexicali Baja California, México. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 63–67, 2002.
- [9] Argelia Crisóstomo [UQROO] and David Morillón [II-UNAM]. Recomendaciones para el diseño del control solar de edificios en Chetumal, Quintana Roo. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 151–154, 2002.
- [10] Jesús Chávez and David Morillón [II-UNAM]. Recomendaciones bioclimáticas para el diseño arquitectónico y urbano en bioclima cálido-húmedo: caso Veracruz, Ver. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 703–708, 2002.
- [11] Oscar Resendiz, Federico Poujol, Israel Soria [UABCS], and Marco Velázquez [I.T. de La Paz]. Técnicas alternativas para la construcción de viviendas de interés social. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 709–711, 2002.
- [12] Aníbal Luna, Akemi Hotta, and Gonzalo Bojórquez [UABC]. Análisis bioclimático y propuestas de adecuación ambiental en verano para Mexicali, Baja California, México. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 101–103, 2003.
- [13] Manuel Rodriguez, Yolanda Neri, and Victor Fuentes [UAM]. Análisis de la relación entre la evolución de las características estilísticas en la arquitectura y su impacto en las condiciones de confort térmico. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 59–64, 2004.
- [14] Cristina Rodríguez, Miguel Fragoso, and Diego Corcho [UV]. Desarrollo arquitectónico y tecnológico de viviendas de bajo consumo energético para climatización, en áreas de clima cálido-húmedo en México. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 87–89, 2005.
- [15] Ricardo Aguayo [ITESM]. ¿Cómo suena el confort humano integral? Diseño acústico y arquitectura bioclimática. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 53–58, 2006.

- [16] Gabriel Castañeda, Carlos Cruz, Luis Jiménez, and María de Lourdes Carpy [UACH]. La conveniencia de difundir la utilización de tecnologías constructivas reductoras del consumo energético. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 99–103, 2006.
- [17] Rosalía Manríquez and Diego Morales [FA-UNAM]. Análisis comparativo de estrategias de diseño bioclimático en climas templado-seco para determinar los impactos edificación-entorno. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–20, 2007.
- [18] Francisco Sol, Alonso Fernández, and Pedro Montes [IPN]. Estrategias de diseño bioclimático para la ciudad de Oaxaca y zona conurbada. *Memoria* de la XXXI Semana Nacional de Energía Solar, pages ABC-25, 2007.
- [19] Marcos González and Raymundo Mayorga [IPN]. Morfología geométrica de la envolvente arquitectónica como elemento de control térmico. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-29, 2007.
- [20] Ana Velasco [UMICH]. Un estudio de gráficas solares para la vivienda de interés social en Morelia, Michoacán. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-42, 2007.
- [21] Juan Bárcenas [U. del Caribe], Evelyn Pérez, and Inocente Bojórquez [UQ-ROO]. Techumbres térmicamente eficientes, en el clima tropical cálido húmedo. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-31, 2008.
- [22] Rosalía Manríquez [Sociedad de Arquitectos Bioclimáticos de México A.C.], Jorge Wolpert, Sergio Cocoletzi [CONAE], Raúl Figueroa [INEGI], and Marco Rojas [U.A. de Chapingo]. Edificaciones sustentables en el clima cálido seco. Caso de estudio Mexicali, B.C., beneficios económicos, ambientales y sociales. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-49, 2008.
- [23] Hiriam Díaz and Inocente Bojórquez [UQROO]. Recomendaciones para el análisis de ganancias térmicas en viviendas del caribe mexicano. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-04, 2009.
- [24] Raymundo Mayorga and Marcos González [IPN]. Morfología geométrica de la envolvente arquitectónica como elemento de control térmico. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–19, 2009.

- [25] Carmen Buerba, Carolina Téllez, Érika Pérez, Claudia Pérez, Pilar Gómez, Javier López, Rafael Magdaleno, Victor Bolaños, Estefanía Alfaro, and Iván Hernández [UMICH]. Estrategias arquitectónicas por subclimas para la República Mexicana. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–26, 2009.
- [26] Daniel Solís [II-UNAM]. Análisis térmico en uso de aislamiento y otras medidas bioclimáticas aplicadas a vivienda económica con alta carga térmica interna en 6 ciudades con clima cálido-seco. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–38, 2009.
- [27] Oscar Reséndiz, Federico Poujol [UABCS], David Morillón, Luis Fernández [II-UNAM], and Aníbal Luna [UABC]. Propuesta de una vivienda económica con características de confort térmico y ahorro de energía para la Ciudad de La Paz, B.C.S. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-48, 2009.
- [28] Inocente Bojórquez [UQROO] and Annel Cardeña [I.T. de Chetumal]. Criterios para determinar las dimensiones mínimas de una vivienda energéticamente eficiente en un clima cálido-subhúmedo. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–21, 2010.
- [29] Irene Marincic, Manuel Ochoa, and Guadalupe Alpuche [UNISON]. La vivienda económica en Hermosillo y el consumo de energía eléctrica. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–24, 2010.
- [30] Alma García, Victor Fuentes [UAM], and Irene Marincic [UNISON]. Propuesta de adecuación bioclimática para una vivienda económica de bajo consumo de energía en Hermosillo, Sonora. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–29, 2010.
- [31] Daniel Solís [IPN]. Análisis térmico de medidas bioclimáticas simples aplicadas a vivienda económica con alta carga térmica interna en 6 ciudades con clima cálido-seco. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–48, 2010.
- [32] Araceli Morales [FA-UNAM] and David Morillón [II-UNAM]. Geometría de la ventana y su impacto en el confort térmico de la vivienda: caso Chilpancingo, Gro. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC—59, 2010.

- [33] Raymundo Mayorga and Marcos González [IPN]. Ganancia térmica a partir de la forma de la envolvente arquitectónica. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-71, 2010.
- [34] Roberto García and Melchor Fernández [UAM]. Análisis energético y estrategias de diseño bioclimático en climas cálido secos. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–81, 2010.
- [35] David Morillón [II-UNAM]. Metodología para el diseño bioclimático. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 1–6, 2000.
- [36] Jaume Roset [U.P. de Cataluña], Irene Marincic, and Manuel Ochoa [UNI-SON]. Modelos en arquitectura: evaluación térmica integral. Proceedings of the ISES Millennium Solar Forum 2000, pages 7–12, 2000.
- [37] María Pérez, Jorge Salomón, and Alejandro Lazcano [UADY]. Diagnóstico y tratamiento para edificios saludables. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 19–23, 2000.
- [38] Victor Fuentes and Manuel Rodriguez [UAM]. El análisis bioclimático y su impacto dentro de la metodología de diseño. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 59–64, 2000.
- [39] Néstor Mesa, José Cortegoso, and Carlos Rosa [CRICYT]. Determinación de área de fachadas potencialmente colectoras en medios urbanos, a través de un modelo gráfico computacional. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 113–117, 2000.
- [40] Antonio Urbano, Yasuhiro Matsumoto, Jaime Aguilar, and René Asomoza [CINVESTAV]. Herramienta de geometría solar aplicada a sistemas y arquitectura bioclimática. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 133–137, 2000.
- [41] Rafael Cabanillas, Jesús Pérez, Saúl Robles, and Héctor Villa [UNISON]. Desarrollo de una aplicación en Internet (applet) para el cálculo de dispositivos de control solar. Proceedings of the ISES Millennium Solar Forum 2000, pages 163–165, 2000.
- [42] Guadalupe Alpuche [CIE-UNAM] and Christopher Heard [IMP]. Análisis de datos climatológicos y cálculo de propiedades psicrométricas para el simulador PowerDoe. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 33–37, 2001.

- [43] Victor Fuentes and Manuel Rodríguez [UAM]. Estimación de datos climatológicos con fines de diseño bioclimático. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 43–47, 2001.
- [44] María Pérez, Manuel Herrera [UADY], and A. Oliva [CINVESTAV]. Simulador solar para caracterización térmica de techumbres. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 21–24, 2002.
- [45] Manuel Ochoa, Irene Marincic, and Héctor Villa [UNISON]. Diseño microclimático de espacios exteriores confortables y energéticamente eficientes. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 25–30, 2002.
- [46] Miguel Arzate and Diego Morales [FA-UNAM]. El diseño bioclimático en la vivienda. Caso aplicado a la ciudad de Querétaro. Memoria de la XXVI Semana Nacional de Energía Solar, pages 147–150, 2002.
- [47] David Mejía and David Morillón [II-UNAM]. Análisis comparativo de los métodos para obtener la radiación solar global, para aplicación en el diseño bioclimático. Memoria de la XXVI Semana Nacional de Energía Solar, pages 131–133, 2002.
- [48] Guillermo De la Paz [U. de Camagüey]. Protección solar vs. sentido común en la arquitectura cubana: propuestas para la formación del arquitecto. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 161–165, 2002.
- [49] María Corral, Aníbal Luna, Ricargo Gallegos, and Teresita Verdugo [UABC]. Evaluación térmica de técnicas de adecuación ambiental para la vivienda popular de sectores de bajos ingresos en una región de clima cálido extremo. Memoria de la XXVI Semana Nacional de Energía Solar, pages 169–174, 2002.
- [50] Irene Marincic, Manuel Ochoa [UNISON], and Antonio del Río [CIE-UNAM]. Respuestas térmicas frecuenciales para caracterizar edificios en diferentes épocas del año. Memoria de la XXVII Semana Nacional de Energía Solar, pages 29–32, 2003.
- [51] Jesús Pérez, Rafael Cabanillas, Fernando Hinojosa [UNISON], and Roberto García [UAM]. Desarrollo de un programa de simulación térmica basado en la admitancia de los materiales. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 55–58, 2003.

- [52] Martha Canales [II-UNAM] and Christopher Heard [IMP]. Archivos de datos climáticos en Cabo San Lucas, BCS, México, para la simulación del comportamiento térmico de edificios en DOE. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 19–24, 2004.
- [53] Eduardo Vázquez [UABC]. Programa para PC para en análisis de asoleamiento de ventanas (Solventana). Ejemplo de aplicación en Mexicali, Baja California, México. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 49–54, 2004.
- [54] Ignacio Martín and Teresa Alarcón [CIMAV]. Evolución de las metodologías para el cálculo de cargas térmicas en edificaciones, desarrolladas por la ASHRAE. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 113–116, 2004.
- [55] Alejandro Correa [U. Iberoamericana] and David Morillón [II-UNAM]. Modelo para el análisis térmico de la ventana para determinar el impacto de las variables de la misma en el confort: caso oficinas en la Ciudad de México. Memoria de la XXIX Semana Nacional de Energía Solar, pages 91–94, 2005.
- [56] Héctor López and Esperanza García [UAM]. El cálculo del volumen vegetal funcional en el manejo de temperatura y humedad exterior. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 23–28, 2006.
- [57] Luis Fernández, Norberto Chargoy [II-UNAM], and Miguel Porta [Centro de Investigaciones Biológicas del Noroeste]. Análisis generalizado de sensibilidad de las medidas de ahorro energético. Memoria de la XXX Semana Nacional de Energía Solar, pages 41–46, 2006.
- [58] Victor Fuentes, Antonio Abad, Aníbal Figueroa, Jesús Hernández, and Roberto García [UAM]. Heliodón estacional del laboratorio de arquitectura bioclimática de la UAM Azcapotzalco. Memoria de la XXX Semana Nacional de Energía Solar, pages 191–194, 2006.
- [59] Alejandra Zermeño and David Morillón [II-UNAM]. Metodología para el análisis bioclimático de la arquitectura vernácula, Caso: Chiapa de Corzo, Chiapas. Memoria de la XXX Semana Nacional de Energía Solar, pages 195–203, 2006.
- [60] Carlos Quirós, Rosalinda González, Lesvia Pérez, and Eduardo González [U. de Zulia]. Construcción de un heliógrafo experimental para la estimación de

- las condiciones del cielo en la VBP-1. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 229–233, 2006.
- [61] Alejandro Mesa, Mariela Arboit, and Carlos de Rosab [CRICYT]. Modelo de evaluación de la incidencia de las distintas componentes de la radiación solar, para entornos urbanos con alta incidencia del arbolado público. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–02, 2007.
- [62] Miguel Gijón, Gabriela Álvarez, Jorge Aguilar, Jesús Xamán, Efraín Sima, and Jason Flores [CENIDET]. Comparación de la demanda energética para el confort de viviendas de interés social en el municipio de Jiutepec, Morelos, utilizando la metodología de grados-día y de Trnsys. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC-06, 2007.
- [63] Irene Marincic [UNISON] and Antonio del Río [CEMITT]. Redes neuronales para el estudio del comportamiento térmico de edificios. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–11, 2007.
- [64] Juan Bárcenas [U. del Caribe] and Inocente Bojórquez [UQROO]. Metodología para la obtención de la temperatura superficial en impermeabilizantes asfálticos prefabricados y membranas elastoméricas, en un ambiente solar. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-12, 2007.
- [65] Carmen García and María Pérez [UADY]. La toma de decisiones: un aspecto determinante en el desempeño ambiental de la vivienda autoproducida en Mérida, Yucatán. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-16, 2007.
- [66] Eduardo Elizondo and Raymundo Mayorga [IPN]. Orientación de edificios en función del ángulo vertical y dirección de incidencia de la lluvia conducida por viento. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-28, 2007.
- [67] Manuel Ochoa and Guadalupe Alpuche [UNISON]. Evaluación de la habitabilidad térmica en espacios exteriores en clima desértico. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–39, 2007.
- [68] Agustín Torres and David Morillón [II-UNAM]. Cálculo de la evotranspiración en techos verdes con clima templado, estudio de caso: Casa Popular,

- Distrito Federal. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-08, 2008.
- [69] Mariluz Arroyo and Diego Morales [FA-UNAM]. Espacios térmicamente balanceados en edificios en clima cálido-húmedo. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-07, 2009.
- [70] Raúl Canto, Ligia Ancona, and Adrián Contreras [UADY]. Metodología para la caracterización de variables climáticas que afectan la sensación térmica en la República Mexicana y determinación de las estrategias correspondientes de diseño. Caso de estudio: Yucatán. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-09, 2009.
- [71] Iván Oropeza and David Morillón [II-UNAM]. Modelos de confort térmico para espacios exteriores. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-02, 2010.
- [72] Agustín Torres and Iván Oropeza [II-UNAM]. Comparación de la simulación térmica de un edificio utilizando los software Ecotec y Enegy Plus, estudio de caso: Torre Maple del conjunto residencial Bosques de las Lomas II de la Ciudad de México. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–25, 2010.
- [73] Victor Fuentes [UAM]. Los Grados-Día como herramienta de diseño bioclimático para el ahorro de energía en las edificaciones. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-39, 2010.
- [74] Juan Rodríguez [UGTO] and Osvaldo Rodríguez [I.T. de León]. Evaluación de dispositivo para determinación de coordenadas horizontales solares. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–74, 2010.
- [75] Gonzalo Bojórquez, Ricardo Gallegos, and Aníbal Luna [UABC]. Estudio de comportamiento térmico de tres prototipos de vivienda, para un clima desértico. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 35–39, 2000.
- [76] Adolfo Iriarte [U.N. de Catamarca], Graciela Lesino [U.N. de Salta], and César Matías [E.E.A. INTA Catamarca]. Acondicionamiento bioclimático de locales para propagación de plantas. *Proceedings of the ISES Millennium* Solar Forum 2000, pages 119–125, 2000.

- [77] Oscar Reséndiz, Federico Poujol, Alfredo Flores [UABCS], Marco Velásquez, and Israel Soria [I.T. de La Paz]. Análisis financiero y de confort de dos viviendas de interés social. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 43–47, 2003.
- [78] María Corral [UABC]. Comportamiento térmico de técnicas de adecuación ambiental en vivienda para sectores de bajos ingresos en Mexicali, B.C. Memoria de la XXIX Semana Nacional de Energía Solar, pages 121–125, 2005.
- [79] Gabriel Gómez and Armando Alcántara [UCOL]. Casa bioclimática para clima cálido sub-húmedo. Memoria de la XXX Semana Nacional de Energía Solar, pages 15–18, 2006.
- [80] José Mercado, Laura Mercado, and Manuel Ochoa [UNISON]. Evaluación térmica para una casa habitación con principios bioclimáticos en Hermosillo, Sonora. Memoria de la XXX Semana Nacional de Energía Solar, pages 133– 138, 2006.
- [81] Eduardo González, Gaudy Bravo, Rosalinda González, Lesvia Pérez, Axa Rojas, Magalis Gallardo, Elizabeth Tosí, and Rafael Falcón [U. de Zulia]. Desempeño térmico de la VBP-1: temperaturas características, factor decremental y retraso térmico. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 247–252, 2006.
- [82] Carlos Romo and Héctor Ferreiro [FA-UNAM]. Casa habitación compacta sustentable, fraccionamiento Ojo de Agua, municipio de Tecamac, Estado de México. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-02, 2008.
- [83] Julieta Acuña, Rubén Dorantes, and Jesús Mota [UAM]. Estudio comparativo de una vivienda con principios bioclimáticos y una vivienda convencional. Caso de estudio: Ciudad Guadalupe, Zacatecas. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–26, 2008.
- [84] Julieta Acuña, Rubén Dorantes, and Jesús Mota [UAM]. Resultados finales del estudio experimental comparativo de confort higrotérmico de dos viviendas en la ciudad de Guadalupe, Zacatecas. ¿Se puede lograr condiciones de confort higrotérmico en esta localidad utilizando sólo sistemas

- pasivos? Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-49, 2009.
- [85] Enrique Caldera [Grupo Acción Interdisciplinaria Ambiental A.C.]. La Ecoaldea Los Carrizos. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-09, 2010.
- [86] Irene Marincic, Manuel Ochoa, and Rafael Cabanillas [UNISON]. Evaluación de un modelo prototípico de edificio educativo en clima cálido seco. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 21–25, 2001.
- [87] Guillermo Harada [Dirección General de Zoológicos de la Cd. de México] and David Morillón [II-UNAM]. Diseño bioclimático para un mariposario en el zoológico de San Juan de Aragón. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 115–120, 2001.
- [88] Aníbal Figueroa and Gloria Castorena [UAM]. Vivienda bioclimática en madera Chilua, Estado de México. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 69–73, 2003.
- [89] Roberto Calderón y Jannett Algrávez [Grupo Iluarco Consultores]. Arquitectura mexicana, ahorro y eficiencia energética en un clima cálido seco: Casa Calderón Algrávez, Mexicali, BC. Memoria de la XXVII Semana Nacional de Energía Solar, pages 95–100, 2003.
- [90] Gonzalo Bojórquez, Aníbal Luna, Edgar Cota, and Javier Espinoza [UABC]. Adecuación ambiental de residencia en clima cálido extremoso: Mexicali, Baja California. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 7–13, 2005.
- [91] Julieta Acuña and Gloria Castorena [UAM]. Prototipo de vivienda bioclimática de interés social para un clima semifrío seco: caso Zacatecas, Zac. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–07, 2007.
- [92] Elide Staines and Javier Terrazas [UACJ]. El ahorro energético de vivienda Casa Samalayuca, Chihuahua. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–15, 2007.

- [93] Gloria Castorena and Aníbal Figueroa [UAM]. Análisis del comportamiento del viento y asoleamiento en espacios de uso exterior, proyecto y construcción de cafetería. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-43, 2007.
- [94] Javier Terrazas and Elide Staines [UACJ]. Diseño y ahorro energético en vivienda económica. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-05, 2008.
- [95] R. Espinoza, G. Saavedra, F. Huaylla [Centro de Energías Renovables y Uso Racional de la Energía], and A. Gutarra [U.Ñ. de Ingeniería]. Confort térmico simulado para viviendas altoandinas del Perú (3000-5000 msnm). *Memoria de la XXXIII Semana Nacional de Energía Solar*, 2009.
- [96] Glacir Fricke [U. San Francisco / Pontificia U. Católica], Rosana Soares [Pontificia U. Católica], Jane Tasinari [U. Estatal de Campinas], and Gabriel Castañeda [UACH]. El uso de sistema solar en viviendas de interes social. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-08, 2009.
- [97] Manuel Ochoa, Guadalupe Alpuche, Irene Marincic [UNISON], and Julio Marcor [Secretaría de Salud del Estado de Sonora]. Estrategias bioclimáticas en edificios para la salud. Estudio de caso: Hospital General de Caborca, Sonora. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-36, 2009.
- [98] María Herrera [INCIHUSA-CONICET], Emiliano Franco, and Germán Cordero [U. de Mendoza]. Tecnologías innovadoras como respuesta a los requerimientos de la arquitectura energéticamente eficiente. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–20, 2010.

6. Desempeño térmico de materiales de la envolvente

En este capítulo se incluyen las publicaciones relativas al desempeño térmico de los materiales de la envolvente de las edificaciones. El desempeño térmico, para este caso, es el flujo de calor a través de una envolvente en relación a las propiedades termofísicas de ésta y del ambiente.

Esta sección se divide en seis subsecciones: simulaciones numéricas-computacionales y modelos matemáticos, experimentos de transferencia de calor, sistemas constructivos, nuevos materiales, uso de materiales reciclados y caracterización de materiales. En la subseccion de simulaciones numéricas y modelos matemáticos se incluyen los trabajos que evalúan el desempeño térmico de los materiales por medio de simulaciones numéricas o computacionales o desarrollan modelos matemáticos para este fin. En la parte de experimentos de transferencia de calor se incluyen los trabajos que evalúan el desempeño térmico de los materiales empíricamente. En la subsección de sistemas constructivos se incluyen los artículos que presentan y evalúan distintos sistemas constructivos. El apartado de nuevos materiales contiene los trabajos que proponen nuevos materiales y evalúan su desempeño térmico. La subseccion de uso de materiales reciclados comprende las publicaciones que estudian el desempeño térmico de materiales compuestos a partir de desechos. Por último, en la categoría de caracterización de materiales se incluyen los trabajos que tienen por objeto determinar el valor de las propiedades térmicas de cierto material.

Se han presentado 71 trabajos en relación al desempeño térmico de los materiales en el congreso de la ANES, del 2000 al 2010. Algunos de los trabajos aparecen más de una vez ya que pertenecen a dos o más subsecciones. Dentro de estas publicaciones 16 son relativas a la categoría de simulaciones numéricas y modelos matemáticos, 26 son referentes a experimentos de transferencia de calor, 11 a sistemas constructivos, 5 a nuevos materiales, 8 a uso de materiales reciclados y 24 a caracterización de materiales.

Dentro de la categoría de simulaciones numéricas y modelos matemáticos los grupos con más publicaciones son la Universidad Autónoma de Baja California, con Aníbal Luna, Ricardo Gallegos y Gonzalo Bojorquez (4 publicaciones); la Facultad de Arquitectura de la UNAM, con Alma Ortega (4), Miguel Canseco (3) y Jose Morales (3); la Universidad de Sonora, con Ana Borbón, Rafael Cabanillas y Jesús Pérez (3); la Universidad Autónoma de Baja California Sur, con Oscar Resendiz (3), Federico Poujol (3) y Alfredo Flores (2); y el Instituto de Ingenieria

de la UNAM, con David Morillón (2).

En el apartado de experimentos de transferencia de calor los grupos que más artículos presentaron fueron la Universidad de Sonora, con Ana Borbón, Rafael Cabanillas y Jesús Perez (4); el Centro Nacional de Investigación y Desarrollo Tecnológico, con Leonel Lira, Jesús Xamán e Yvonne Chávez (3); la Universidad de Quintana Roo, con Inocente Bojórquez (3); la Universidad Autónoma de Baja California Sur, con Oscar Reséndiz, Oscar González, Federico Poujol y Alfredo Flores (2); y el Instituto Superior Politécnico José Antonio Echeverría (Cuba), con Liván Hernández (2).

En el ramo de sistemas constructivos los grupos destacados son el Instituto Politécnico Nacional, con Rafael Alavez (2); la Universidad Autónoma de Baja California, con Ricardo Gallegos (2); y el Instituto de Ingeniería de la UNAM, con David Morillón (2).

En la categoría de nuevos materiales el grupo que presentó más de una publicación es la Universidad Autónoma de Baja California, con Aníbal Luna, Ricardo Gallegos y Gonzalo Bojórquez (2).

Con respecto al uso de materiales reciclados los grupos que más trabajos presentaron son la Universidad Autónoma de Chiapas, con Gabriel Castañeda (3); la Universidad Autónoma de Baja California, con Gonzalo Bojórquez, Ricardo Gallegos y Aníbal Luna (3); y en menor medida Carlos Cruz de la UACH (2).

En la parte de caracterización de materiales los grupos sobresalientes son la Universidad de Quintana Roo, con Inocente Bojórquez (7); la Universidad de Sonora, con Ana Borbón, Rafael Cabanillas y Jesús Pérez (3); la Universidad Autónoma Metropolitana, con Victor Fuentes (3); el Centro Nacional de Investigación y Desarrollo Tecnológico, con Leonel Lira (3), Jesús Xamán (2) e Yvonne Chávez (2); y en menor medida, el Instituto Politécnico Nacional, con Rafael Alavez (2); Arturo Llovera y Fernando Flores de la UQROO (2); y Luis Vargas de la UNISON (2).

6.1. Simulaciones numéricas-computacionales y modelos matemáticos

En el 2000, Aníbal Luna, Ricardo Gallegos y Gonzalo Bojórquez realizan una simulación térmica a través de Doe 2.1e en la cual se encontró que el adobe presentó una disminución en la carga térmica con respecto al bloque de concreto y ladrillo de barro; sin embargo al disminuir la carga térmica por conducción en los muros, ésta aumentó a través de la loza [1].

En el 2002, J. Flores, G. Álvarez y C. Cortina presentan un estudio teórico del comportamiento térmico de un arreglo de vidrios douvent (vidrio + filtro + aire + vidrio) con o sin recubrimiento solar para diferentes espaciados entre vidrios. Se encontró que la distancia entre vidrios no afecta significativamente, mientras que el uso del filtro solar presenta diferencias de hasta 25 % [2].

En el 2003, Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos y Akemi Hotta simulan con el Doeplus el costo de climatización artificial en el periodo de verano, comparando los sistemas tradicionales de bloque de concreto, ladrillo y adobe contra el sistema constructivo Luna-Bojórquez. Éste último se compone por los materiales reciclados mezcla de sílice y lodo de papel, mezclados con cemento portland tipo 1, cal hidratada, aditivo inclusor de aire y agua. Los resultados muestran una reducción en un 12.52 % del costo por uso de aire acondicionado al aplicar el sistema constructivo L-B con respecto al sistema de bloque de concreto común [3].

Alfredo Flores, Miguel Aldana, Oscar Reséndiz y Federico Poujol desarrollan, a través de Matlab, un esquema de discretización de elemento finito y se genera una solución numérica (con condiciones de frontera tipo Dirichlet y laterales tipo Neumann). El objeto de este trabajo es aportar una herramienta para evaluar rápida y eficazmente el impacto de la utilización de diversos elementos aislantes [4].

En el 2004, Aníbal Luna, Nicolás Velázquez, Gonzalo Bojórquez y Ricardo Gallegos desarrollan una hoja de cálculo en Excel para obtener un análisis térmico de los elementos que componen la envolvente, para determinar la carga térmica de la edificación [5].

En el 2005, Ricardo Gallegos, Gonzalo Bojórquez y Aníbal Luna estiman, por medio de simulaciones, el efecto de carga térmica por tipo de vidrio (sencillo, pyrolítico y reflejante). El reflejante tuvo los mejores resultados [6].

En el 2006, Ana Borbón, Rafael Cabanillas, Jesús Pérez y Carlos Pérez presentan un estudio teórico de la transferencia de calor en muros construidos con bloque de cemento hueco [7].

En el 2007, Oscar Reséndiz, Elizabeth Chávez, Federico Poujol, Alfredo Flores y David Morillón realizan un análisis comparativo, por medio del programa Trnsys, de dos viviendas de interés social construidas con ladrillo y adobe respectivamente. Los resultados muestran que la vivienda de adobe presenta un mejor comportamiento térmico y un subsecuente ahorro de energía [8].

Ana Borbón, Rafael Cabanillas y Jesús Pérez realizan un estudio de transferencia de calor en muros de bloque de concreto hueco con dos cavidades. El modelo es unidimensional en estado estable. En base a los resultados se puede observar que la resistencia térmica promedio presenta un valor de 0.18 °Cm2/W para verano y de 0.19 °Cm2/W para invierno [9].

En el 2008, Alma Ortega, Diego Morales y Jazmín Carbajal presentan un esbozo comparativo de modelos desarrollados para representar el comportamiento térmico de las cubiertas vegetales en las edificaciones. Este tipo de cubiertas se comportan como aislantes térmicos. Se identificó que el uso de materiales aislantes no es recomendable, debido a que reducen la extracción de calor del interior al exterior, excepto en condiciones extremas de temperaturas bajas [10].

Oscar Reséndiz, Federico Poujol, Elizabeth Chávez, Miguel Ojeda, David Morillón y Luis Fernández evalúan térmicamente, por medio de simulación en Trnsys, dos casas con materiales de construcción diferentes (bloc de concreto y adobe) para la ciudad de La Paz. Se observa que la casa de abobe tiene un mejor amortiguamiento térmico [11].

Jesús Pérez, Rafael Cabanillas, Ana Borbón y Armando Piña presesentan un estudio teórico experimental sobre la transferencia de calor en un bloque de concreto con cavidades interiores. Se involucran los mecanismos de transferencia de calor por conducción (para puentes térmicos), convección y radiación (para cavidades huecas) [12].

En el 2009, Guadalupe Huelsz, Raúl Retchman y Jorge Rojas comprueban por medio de simulaciones numéricas que la resistencia térmica no asegura un buen desempeño y se requiere también de una alta capacidad de almacenamiento térmico cuando la variación diaria de temperatura es importante y no se usa aire acondicionado. Se evalúan tres materiales: concreto, concreto aereado y poliestireno expandido. El mejor fue el concreto aereado, ya que presenta el mayor amortiguamiento y tiempo de retraso mientras que el peor fue el poliestireno a pesar de que su resistencia es la más alta [13].

En el 2010, Edwin Tovar, Aníbal Figueroa, Manuel Gordon y Alfonso Valiente proponen el uso de la vegetación en azoteas y muros para mejorar el comportamiento térmico de las edificaciones, reducir costos por climatización, recuperar áreas verdes en espacios urbanos, mejorar la calidad del aire y reducir la isla de calor. Se llevan a cabo estimaciones del impacto de este sistema en base a la hoja de cálculo de Balance Térmico desarrollada por el Dr. Victor Fuentes [14].

José Morales, Alma Ortega, Rocío López y Miguel Canseco comparan el cálculo térmico que se aplica a una cubierta tradicional respecto de una cubierta verde. Las variables que se toman en cuenta son: la radiación absorbida, reflejada, transmitida, evo-transpirada y utilizada en el proceso de fotosíntesis; el flujo de calor convectivo dentro de la capa vegetal; y las transferencias de calor por conducción. Los resultados muestran una diferencia superficial interior de 5°C

[15].

Alma Ortega, José Morales, Isabel López y Miguel Canseco exponen el diseño de un Modelo Paramétrico con el objeto de monitorear el desempeño térmico de una cubierta verde y así validar su efectividad como aislante térmico en las dos épocas extremas (calurosa y fría) [16].

6.2. Experimentos de transferencia de calor

En el 2000, Pilar Barrios y Rubén Dorantes evalúan de manera experimental el comportamiento térmico de algunos vidrios que tienen uso real y potencial en México [17].

Fernando Flores, Inocente Bojórquez, Arturo Llovera, José Hernández y María Pérez presentan un estudio del comportamiento térmico de dos materiales típicos: yeso y madera de pino, así como de un material a base de fibras leñosas [18].

Leonel Lira, Jesús Xamán e Yvonne Chávez presentan los resultados de medición de la conductividad térmica aparente de dos diferentes materiales: bloque de piedra pomes y bloque de tezontle [19].

Estos mismos autores presentan un análisis del campo de temperatura de la guarda de un instrumento denominado aparato de placa caliente con guarda, utilizado para medir conductividad de materiales [20].

Karla Marroquín obtiene y presenta las propiedades térmicas y ópticas de algunos materiales de mayor aplicación en Puebla [21].

En el 2001, Leonel Lira, Yvonne Chávez y Jesús Xamán presentan los valores del coeficiente de expansión térmica lineal de cuatro diferentes materiales plásticos: acrílico hielo, panel T&T, E-87 y poliéster cristal [22].

Los mismos autores, junto con Gabriela Alvarez reportan los valores de transmitancia de tres materiales plásticos: acrílico hielo, FR-12oz y poliéster cristal; se mide a través de un espectrofotómetro en la región visible y en el infrarojo cercano [23].

En el 2002, Liván Hernández propone disminuir la utilización de cemento en la estabilización del suelo. Para lograr dicho objetivo se utilizan la cal, la puzolana y el cemento como estabilizadores [24].

Oscar Reséndiz, Oscar González, Federico Poujol y Alfredo Flores estudian el efecto del uso de recubrimientos con poliuretano en la reducción de la temperatura [25].

En el 2003, estos mismos autores comparan desde el punto de vista térmico y económico dos opciones de recubrir el techo: poliuretano y cartón arenado rojo.

Se concluye que el poliuretano es una mejor opción y que además cumple con las funciones de aislante e impermeabilizante [26].

En el 2004, Rafael Alavez, Rubén Dorantes, Victor Fuentes y Humberto Medel diseñan un conductivímetro de grandes dimensiones para llevar a cabo pruebas en elementos constructivos [27].

Irene Marincic y Manuel Ochoa estudian térmicamente dos viviendas iguales, una construida con block de cemento y la otra con muros del sistema prefabricado de block de poliestireno expandido, con estructura ahogada de concreto ahogado. Se encontró que los efectos no eran los deseados. La causa principal es no haber utilizado en forma selectiva el aislamiento, considerando entres otros factores la orientación [28].

En el 2006, Luis Fajardo y Armando Alcántara realizan una investigación de tipo experimental en la cual se compararon dos módulos, uno sin protección y otro con cubierta de pasto. Se concluyó que éste sistema es eficiente un 70 % en el ahorro de energía y 56 % en el confort térmico [29].

Jesús Chávez, Rafael Almanza, Neftalí Rodríguez y Laura Santiago presentan los resultados experimentales de las estimaciones de conductividad térmica para: ladrillo rojo, tepetate y adobe. Asímismo, se reportan datos de coeficientes de transferencia de calor por convección para muros construidos por estos materiales [30].

Inocente Bojórquez, Liván Hernández y Emigdo Suárez presentan la metodología y los resultados de los ensayos sobre comportamiento térmico de materiales polifásicos con refuerzo de origen orgánico y matriz de cemento Pórtland [31].

En el 2008, Claudia Calderón realiza una evaluación comparativa de la adecuación bioclimática de la vivienda tradicional ensenadense dentro de sus dos tipos y tecnologías constructivas identificadas (adobe y madera) y en las dos temporadas climáticas críticas de la ciudad (invierno y verano). Se concluye, a partir del monitoreo de temperatura y humedad relativa, que la vivienda construida en madera, de origen anglosajón, presenta un mejor desempeño higrotérmico [32].

Inocente Bojórquez, Set Castillo y Loren Puc muestran los resultados de conductividad térmica, calor específico y densidad, en base a los ensayos realizados en diferentes materiales utilizados en la zona de Caribe Mexicano: un impermeabilizante tradicional, dos diferentes tipos de morteros, un material utilizado como recubrimiento y un concreto utilizado en muros prefabricados [33].

Ana Borbón, Rafael Cabanillas, Jesús Pérez, José Dimas y Renée Mendoza describen el diseño y procedimiento constructivo de un muro de pruebas elaborado con bloques de concreto, para determinar su resistencia térmica. El estudio se basa en un modelo teórico de transferencia de calor, el cual es validado de forma

experimental [34].

Jesús Pérez, Rafael Cabanillas, Ana Borbón y Armando Piña presesentan un estudio teórico-experimental sobre la transferencia de calor en un bloque de concreto con cavidades interiores. Se involucran los mecanismos de transferencia de calor por conducción (para puentes térmicos), convección y radiación (para cavidades huecas) [12].

En el 2009, Julia Solís y Gabriel Castañeda exponen los resultados de la evaluación experimental del desempeño térmico de un panel verde, como estrategia pasiva para el control de radiación solar y temperatura interior [35].

Inocente Bojórquez, Lorena Puc y Jesús Castillo hacen una análisis comparativo, por medio de una cámara fototérmica, entre las temperaturas superficiales de diversos materiales utilizados en viviendas vernáculas del Caribe Mexicano. Se pretende proporcionar recomendaciones arquitectónicas basadas en los antecedentes históricos, que pueden ser utilizadas actualmente [36].

Roberto García, Iratzio Esquivel y Carlos Ávila exponen un análisis paramétrico (emitancia, inercia térmica, efecto invernadero) de distintos materiales, utilizando módulos experimentales de bajo costo y de fácil construcción, que sirven como apoyo didáctico en la enseñanza de las ciencias arquitectónicas y ambientales [37].

Ana Borbón, Rafael Cabanillas y Jesús Pérez llevan a cabo experimentos basados en el sistema de placa caliente para determinar la resistencia térmica en un prototipo de muro elaborado con bloques de concreto de dos cavidades. Se obtienen resultados de 0.17 °Cm2/W, muy similares a los resultados del modelo teórico en el que se basa [38].

En el 2010, Ana Avendaño y Verónica Huerta revisan y presentan las propiedades térmicas de distintos materiales: ladrillo multiperforado, block cementoarena y concreto. Luego analizan el comportamiento térmico y energético de estos materiales en un proyecto de viviendas ubicado en Veracruz a través de mediciones en sitio. Finalmente se plantean recomendaciones para el diseño de la envolvente [39].

Jorge Álvarez, Ignacio Martín y María Alarcón definen analíticamente, con el método de elemento finito, el tamaño mínimo que deberán tener las probetas que se utilizarán en una caseta prototipo que sirve para determinar experimentalmente el flujo de calor a través de losas de concreto con diversos recubrimientos [40].

Ana Borbón, Rafael Cabanillas, Jésus Pérez y Fernando Hinojosa presentan los resultados del cálculo numérico de la resistencia térmica en un muro de bloques de concreto hueco, obtenidos mediante un modelo de transferencia de calor unidireccional en estado estable. Se comprueban estos resultados por medio

6.3. Sistemas constructivos

En el 2002, Victor Hernández, David Morillón y Luis Fernández muestran los valores obtenidos de resistencia térmica, que deben tener los sistemas constructivos que forman la envolvente de una edificación. Proporcionan tablas con la radiación y la resistencia requerida para cada estado y cada orientación, así como el sistema constructivo propuesto para cada caso [42].

En el 2003, Manuel Ochoa, Irene Marincic y Jacqueline Aguilar comparan la eficiencia energética de tres viviendas; una utilizando un sistema constructivo alternativo, otra con materiales usuales pero haciéndola eficiente y la tercera es una construcción convencional. La que mostró mejores resultados fue la eficiente, pero el sistema alternativo tiene las ventajas de facilidad de construcción y bajo costo, ya que usa paja como componente principal en su sistema constructivo [43].

En el 2004, Rafael Alavez, Rubén Dorantes, Victor Fuentes y Humberto Medel proponen distintos tipos de techumbres utilizando materiales vegetales e industrializados. Se les hicieron pruebas de conductividad térmica por medio de un conductímetro y se encontró una diferencia de 54 % de transmisión térmica entre la mejor muestra y la losa de concreto [44].

María Corral, Ricardo Gallegos y Aníbal Luna llevan a cabo pruebas experimentales sobre distintos sistemas constructivos, variando su absortividad [45].

En el 2005, Luis Jiménez, Gabriel Castañeda, Teresa Agüello, Carlos Cruz y Francisco Vecchia evalúan el comportamiento térmico de una vivienda de interés social techada con el sistema Placa-losa [46].

En el 2006, Vicente Flores da a conocer las experiencias en el uso y manejo de materiales de construcción a base de arcilla (adobe y tepetate). Menciona que estos materiales son aptos para climas extremosos debido a su alta densidad y baja conductividad [47].

En el 2007, Gilberto Gameros, Gabriel Gómez y Armando Alcántara evalúan un dispositivo de protección solar para techo, el cual se compone por botellas de PET de 2 lts rellenas de agua, pintadas de blanco y colocadas horizontalmente de forma que cubran la superficie. El mejor desempeño se da cuando el dispositivo no está en contacto con la cubierta (sobrepuesto), y con un contenido de 50 % de agua [48].

Gabriel Castañeda, Francisco Vecchia y Norma Rodríguez desarrollan un análisis comparativo de los registros de la temperatura superficial de dos sistemas

constructivos para techo: concreto armado de $10~\rm cm$ y el sistema Domozed. Este último, utilizado en Perú, se constituye por piezas prefabricadas en forma de casquete de base cuadrada de $60 \times 60~\rm cm$, elaboradas con mortero-cemento-arena de $2.5~\rm cm$ de espesor. Los resultados muestran un amortiguamiento térmico de hasta $2.5~\rm ^{\circ}C$ [49].

Sildia Mecott, Jesús Cano, Rafael Alavez, Ricardo Gallegos, Gonzalo Bojórquez y Aníbal Luna realizaron simulaciones del comportamiento térmico de cuatro diferentes sistemas constructivos por medio de Doe 2.1e, para la ciudad de Oaxaca, Oaxaca. El sistema que mejor eficiencia térmica presentó fue el de ladrillo rojo común con cubierta de concreto armado. Se observó que existe una reducción del 37 % en el consumo de energía en un diseño bioclimático con respecto a uno convencional [50].

En el 2008, Omar Cortes, David Morillón y Alejandro Mesa presentan un análisis térmico de los sistemas constructivos de techos y muros más comunes en México, mediante el cálculo de los valores de resistencia térmica y el coeficiente global de transferencia de calor. Se comparan los valores de resistencia térmica contra lo especificado en la normatividad oficial para cada bioclima del país. Concluye que los actuales sistemas constructivos no cumplen con dicha normatividad y es necesario el aislamiento (sobre todo para bioclimas cálidos) [51].

En el 2010, Bruno Palomino y Rocío López presentan una propuesta para solucionar el problema del incremento del peso sobre las cubiertas al utilizar vegetación. Para eso se plantea aligerar los materiales del sustrato utilizando agrolita como material drenante y plantas del género Sedum [52].

6.4. Nuevos materiales

En el 2002, Inocente Bojórquez, Fernando Flores y Arturo Llovera proponen el uso de un nuevo material: un concreto a base de fibras de origen orgánico provenientes de la caoba. Determinan su conductividad por medio de placa caliente y simulan su desempeño térmico por medio de Doeplus [53].

Aníbal Luna, Gonzalo Bojórquez, Ricardo Gallegos, Inocente Bojórquez, Fernando Flores y Arturo Llovera evalúan y comparan el comportamiento térmico por simulación de un material a base de fibras leñosas, desarrollado en la U. de Quintana Roo (paneles fabricados con cemento, polvo de piedra caliza triturada, aserrín de caoba y agua) [54].

En el 2003, Rafael Alavez, Leonel Lira, Victor Fuentes y Gustavo Marbán caracterizan los valores de conductividad y resistencia térmica de nuevos materiales vegetales e industrializados no encontrados comúnmente en la literatura,

con el fin de utilizarlos en un componente constructivo aplicado a techumbres. Los materiales fueron los siguientes: palma real, bagazo de coco, ferrocemento y mortero a base de producto volcánico. Se encontraron valores más bajos de conductividad en los materiales vegetales [55].

Jesús Chávez y Rafael Almanza desarrollan un filtro solar para ventanas que consiste en películas delgadas de FeO depositadas sobre sustratos de vidrio calsosa. Se llevan a cabo experimentos para obtener sus propiedades y se compara con el Reflectasol AP Tintex de Vitro, superando a éste último [56].

En el 2010, Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos, Jorge Aguilar y Oscar Gómez-Daza estiman, por medio de una simulación en Doe 2.1e, la carga térmica en una edificación por uso de vidrios laminados con películas delgadas semiconductoras, comparándolos con vidrios de uso en el mercado nacional [57].

6.5. Uso de materiales reciclados

En el 2001, Aníbal Luna, Gonzalo Bojórquez y Ricardo Gallegos exponen el estudio térmico de un concreto ligero a partir de un residuo industrial regional (sílice de cerro prieto) [58].

En el 2003, estos mismos autores junto con Akemi Hotta simulan con el Doeplus el costo de climatización artificial en el periodo de verano, comparando los sistemas tradicionales de bloque de concreto, ladrillo y adobe contra el sistema constructivo Luna-Bojórquez. Éste último se compone por los materiales reciclados mezcla de sílice y lodo de papel, mezclados con cemento portland tipo 1, cal hidratada, aditivo inclusor de aire y agua. Los resultados muestran una reducción en un 12.52 % del costo por uso de aire acondicionado al aplicar el sistema constructivo L-B con respecto al sistema de bloque de concreto común [3].

En el 2008, Gabriel Castañeda, Ruber Trujillo y Francisco Vecchia exponen los resultados experimentales de la comparación del comportamiento térmico de tres sistemas de techo: Losa de Concreto Armado, Placa Losa y Techo Térmico, los tres utilizan el concreto y acero, pero en el último se utilizan materiales que actualmente se consideran residuos: PET y cáscara de coco. Se encontró una gran mejoría en el comportamiento térmico del techo [59].

Luis Vargas, Gonzalo Bojórquez e Inocente Bojórquez presentan un material compuesto a base de papel periódico, cal hidratada y alumbre. Lo analizan experimentalmente, variando la proporción de sus elementos. Se determina para cada muestra su resistencia a compresión y flexión, densidad, absorción y conductividad térmica [60].

Andrés Quiroa, Francisco Vecchia, Gabriel Castañeda y Carlos Cruz evalúan el comportamiento térmico, por medio de termopares conectados a un datalogger, de una vivienda que utiliza como techumbre lámina y plafón fabricados a partir del reciclado de Tetra Pak. Se concluye que el desempeño es regular-bueno, ya que se podría mejorar el comportamiento térmico [61].

En el 2009, Gabriel Castañeda, Luis Jiménez, Carlos Cruz y Glacir Fricke evalúan experimentalmente el comportamiento del sistema de techo VIGALOSA, aislado térmicamente con dos materiales: PET y cáscara de coco. Se concluye que el sistema propuesto funcionó mejor que el sistema típico de concreto armado, y que el mejor aislante fue la cáscara de coco [62].

En el 2010, Héctor Valerdi, Aníbal Figueroa, Manuel Gordon y Miguel Ferrer evalúan las características termofísicas (Q,K,R,U) de un sistema constructivo desarrollado con botellas recicladas de PET. Este material resulta tener una resistencia térmica aproximadamente seis veces superior al ladrillo común [63].

Cecil Martínez, Demián Carmona, Robeto Calderón y Ricardo Gallegos proponen la utilización de envases Tetra Pak como material constructivo. Se presentan los antecedentes de este sistema. Se construyó una tarima rellenando los envases con distintos materiales (arena, tierra, aserrín y poliestireno) con el fin realizar futuras pruebas de resistencia térmica [64].

6.6. Caracterización de materiales

En el 2000, Fernando Flores, Inocente Bojórquez, Arturo Llovera, José Hernández y María Pérez presentan un estudio del comportamiento térmico de dos materiales típicos: yeso y madera de pino, así como de un material a base de fibras leñosas [18].

Leonel Lira, Jesús Xamán e Yvonne Chávez presentan los resultados de medición de la conductividad térmica aparente de dos diferentes materiales, bloque de piedra pomes y bloque de tezontle [19].

Karla Marroquín obtiene y presenta las propiedades térmicas y ópticas de algunos materiales de mayor aplicación en Puebla [21].

En el 2001, Leonel Lira, Yvonne Chávez y Jesús Xamán presentan los valores del coeficiente de expansión térmica lineal de cuatro diferentes materiales plásticos: acrílico hielo, panel T&T, E-87 y poliéster cristal [22].

Estos mismos autores junto con Gabriela Alvarez reportan los valores de transmitancia de tres materiales plásticos: acrílico hielo, FR-12oz y poliéster cristal; se mide a través de un espectrofotómetro en la región visible y en el infrarojo cercano [23].

En el 2002, Inocente Bojórquez, Fernando Flores y Arturo Llovera proponen el uso de un nuevo material: un concreto a base de fibras de origen orgánico provenientes de la caoba. Determinan su conductividad por medio de placa caliente y simulan su desempeño térmico por medio de Doeplus [53].

En el 2003, Rafael Alavez, Leonel Lira, Victor Fuentes y Gustavo Marbán caracterizan los valores de conductividad y resistencia térmica de nuevos materiales vegetales e industrializados no encontrados comúnmente en la literatura, con el fin de utilizarlos en un componente constructivo aplicado a techumbres. Los materiales fueron los siguientes: palma real, bagazo de coco, ferrocemento y mortero a base de producto volcánico. Se encontró valores más bajos de conductividad en los materiales vegetales [55].

En el 2004, Rafael Alavez, Rubén Dorantes, Victor Fuentes y Humberto Medel proponen distintos tipos de techumbres utilizando materiales vegetales e industrializados. Se les hicieron pruebas experimentales de conductividad térmica y se encontró una diferencia de 54 % de transmisión térmica entre la mejor muestra y la losa de concreto [44].

En el 2006, Luis Vargas y Miguel Elizondo estudian y caracterizan las propiedades físicas (densidad, absorción, conductividad térmica) y mecánicas (módulo elástico, resistencia a compresión y tensión) de un material compuesto por morteros de cal, mucílago de nopal, pastas de papel y fibras de coco, que tiene la posibilidad de formar un material aislante térmico útil en construcción [65].

Jesús Chávez, Rafael Almanza, Neftalí Rodríguez y Laura Santiago presentan los resultados experimentales de las estimaciones de conductividad térmica para: ladrillo rojo, tepetate y adobe. Asímismo, se reportan datos de coeficientes de transferencia de calor por convección para muros construidos por estos materiales [30].

Inocente Bojórquez, Liván Hernández y Emigdo Suárez presentan la metodología y los resultados de los ensayos sobre comportamiento térmico de materiales polifásicos con refuerzo de origen orgánico y matriz de cemento Pórtland [31].

En el 2007, Ana Borbón, Rafael Cabanillas y Jesús Pérez realizan un estudio de transferencia de calor en muros de bloque de concreto hueco con dos cavidades. El modelo es unidimensional en estado estable. En base a los resultados se puede observar que la resistencia térmica promedio presenta un valor de 0.18 °Cm2/W para verano y de 0.19 °Cm2/W para invierno [9].

En el 2008, Inocente Bojórquez, Set Castillo y Lorena Puc muestran los resultados de conductividad térmica, calor específico y densidad, en base a los ensayos realizados en diferentes materiales utilizados en la zona de Caribe Mexicano: un impermeabilizante tradicional, dos diferentes tipos de morteros, un material uti-

lizado como recubrimiento y un concreto utilizado en muros prefabricados [33].

Luis Vargas, Gonzalo Bojórquez e Inocente Bojórquez presentan un material compuesto a base de papel periódico, cal hidratada y alumbre. Lo analizan experimentalmente, variando la proporción de sus elementos. Se determina para cada muestra su resistencia a compresión y flexión, densidad, absorción y conductividad térmica [60].

En el 2009, Jessica Trujeque analiza las propiedades físicas de un tipo de bambú localizado en Tabasco. Se determinó su conductividad térmica y su resistencia a compresión y torsión, para dar una propuesta de uso de este material con un perfil estructural [66].

Roberto García, Iratzio Esquivel y Carlos Ávila exponen un análisis paramétrico (emitancia, inercia térmica, efecto invernadero) de distintos materiales, utilizando módulos experimentales de bajo costo y fácil construcción, que sirven como apoyo didáctico en la enseñanza de las ciencias arquitectónicas y ambientales [37].

Ana Borbón, Rafael Cabanillas y Jesús Pérez llevan a cabo experimentos basados en el sistema de placa caliente para determinar la resistencia térmica en un prototipo de muro elaborado con bloques de concreto de dos cavidades. Se obtienen resultados de 0.17 °Cm2/W, muy similares a los resultados del modelo teórico en el que se basa [38].

En el 2010, Inocente Bojórquez, Set Castillo y Moen Máximo caracterizan las propiedades térmicas de maderas tropicales empleadas en la edificación de vivienda y determinan su influencia en el comportamiento térmico de los espacios interiores. Los tipos de madera evaluadas son: Tsalam, Jabín y Caoba, en las cuales se midió densidad, calor específico y conductividad [67].

Rocío López, Diego Morales, Alma Ortega y Miguel Canseco determinan una paleta vegetal idónea para utilizar en la naturación de azoteas en climas templados subhúmedos. La paleta estuvo conformada por 25 especies, de las cuales se registró el comportamiento durante su desarrollo, así como sus características térmicas y ópticas [68].

Inocente Bojórquez y Annel Cardeña establecen criterios para la construcción de vivienda energéticamente eficiente en el clima cálido-subhúmedo. Se revisan normas nacionales e internacionales, así como el comportamiento térmico de ocho materiales y se hizo un análisis del dimensionamiento para las áreas habitables [69].

Lorena Ávila, Victor Fuentes, Leonel Lira y Saúl García determinan los valores de conductividad térmica de las pencas de maguey. El objeto es posibilitar las condiciones para evaluar el desempeño térmico de las viviendas en la región, construidas a base de este material vegetal. Se encontró que es buen aislante

siempre y cuando pierda su humedad [70].

Luis Herrera y Armando Valenzuela caracterizan siete sistemas constructivos de cubiertas utilizados en Chihuahua. Se calcularon las conductancias y posteriormente se evaluó su comportamiento en campo. El mejor sistema para verano fue el de vigueta y bovedilla caliza, mientras que para invierno fue el de la Termolosa. Este proyecto fue solicitado por el Grupo Cementos de Chihuahua [71].

Héctor Valerdi, Aníbal Figueroa, Manuel Gordon y Miguel Ferrer evalúan las características termofísicas (Q,K,R,U) de un sistema constructivo desarrollado con botellas recicladas de PET. Este material resulta tener una resistencia térmica aproximadamente seis veces superior al ladrillo común [63].

Ana Borbón, Rafael Cabanillas, Jesús Pérez y Fernando Hinojosa presentan los resultados del cálculo numérico de la resistencia térmica en un muro de bloques de concreto hueco, mediante un modelo de transferencia de calor unidireccional en estado estable. Se comprueban estos resultados por medio de datos experimentales [41].

Referencias

- [1] Aníbal Luna, Ricardo Gallegos, and Gonzalo Bojórquez [UABC]. Estudio de comportamiento térmico del adobe con el simulador DOE 2.1E. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 147–149, 2000.
- [2] J. Flores, G. Alvarez [CENIDET], and C. Cortina [Bachillerato Tecnológico deÑuestros Pequeños Hermanos]. Estudio de la transferencia de calor en vidrios Douvent con variación de la distancia entre vidrios. Memoria de la XXVI Semana Nacional de Energía Solar, pages 135–139, 2002.
- [3] Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos, and Akemi Hotta [UABC]. Estimación de costo por climatización artificial de un prototipo de vivienda con el sistema constructivo LB, para muros. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 5–9, 2003.
- [4] Alfredo Flores, Miguel Aldana, Oscar Reséndiz, and Federico Poujol [UABCS]. El acceso al sol, como base para la planificación urbana. Caso Área Metropolitana de Mendoza, Argentina. Memoria de la XXVII Semana Nacional de Energía Solar, pages 89–93, 2003.
- [5] Aníbal Luna, Nicolás Velázquez, Gonzalo Bojórquez, and Ricardo Gallegos [UABC]. Desarrollo de hoja de cálculo para análisis térmico en estado esta-

- ble. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 7–12, 2004.
- [6] Ricardo Gallegos, Gonzalo Bojórquez, and Aníbal Luna [UABC]. Efecto de la carga térmica por tipo de vidrio en vivienda de construcción en serie. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 1–6, 2005.
- [7] Ana Borbón, Rafael Cabanillas, Jesús Pérez [UNISON], and Carlos Pérez [UABC]. Estudio de la resistencia térmica en bloque de concreto hueco usado para la construcción de viviendas. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 217–222, 2006.
- [8] Oscar Reséndiz, Elizabeth Chávez, Federico Poujol, Alfredo Flores [UABCS], and David Morillón [II-UNAM]. Evaluación térmica, mediante simulación, de dos casas con materiales diferentes en la ciudad de La Paz, B.C.S. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-19, 2007.
- [9] Ana Borbón, Rafael Cabanillas, and Jesús Pérez [UNISON]. Variación de la resistencia térmica en bloque de concreto hueco para clima extremoso (caso de invierno y verano). *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–33, 2007.
- [10] Alma Ortega, Diego Morales, and Jazmín Carbajal [FA-UNAM]. Esbozo comparativo de modelos para el diseño térmico de cubiertas vegetales. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-24, 2008.
- [11] Oscar Reséndiz, Federico Poujol, Elizabeth Chávez, Miguel Ojeda [UABCS], David Morillón, and Luis Fernández [II-UNAM]. Evaluación técnica económica de dos casas de interés social con materiales diferentes en la ciudad de La Paz, B.C.S. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–25, 2008.
- [12] Jesús Pérez, Rafael Cabanillas, Ana Borbón, and Armando Piña [UNISON]. Estudio teórico-experimental de la transferencia de calor en estado permanente en un bloque de concreto. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–51, 2008.
- [13] Guadalupe Huelsz, Raúl Rechtman, and Jorge Rojas [CIE-UNAM]. Altos valores de la resistencia térmica no aseguran un buen desempeño térmico de la envolvente de una edificación. *Memoria de la XXXIII Semana Nacional* de Energía Solar, pages ABC-50, 2009.

- [14] Edwin Tovar, Aníbal Figueroa, Manuel Gordon [UAM], and Alfonso Valiente [Instituto de Ecología-UNAM]. Potencial bioclimático de la vegetación nativa de México aplicada en envolventes arquitectónicas como dispositivo de control térmico. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–12, 2010.
- [15] José Morales, Alma Ortega, Rocío López [FA-UNAM], and Miguel Canseco [IIM-UNAM]. Comparación del desempeño térmico de una techumbre tradicional vs. una techumbre con cubierta verde. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–15, 2010.
- [16] Alma Ortega, José Morales, Isabel López [FA-UNAM], and Miguel Canseco [IIM-UNAM]. Diseño del modelo paramétrico para evaluar el desempeño térmico de una cubierta verde. Caso de estudio: vivienda de interés social en la zona sur de la Ciudad de México. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-38, 2010.
- [17] Pilar Barrios and Rubén Dorantes [UAM]. Límites de confiabilidad de propiedades ópticas de vidrios comerciales en México, análisis comparativos con resultados experimentales. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 95–100, 2000.
- [18] Fernando Flores, Inocente Bojórquez, Arturo Llovera, José Hernández [UQ-ROO], and María Pérez [UADY]. Comportamiento térmico de materiales constructivos a base de fibras leñosas. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 101–104, 2000.
- [19] Leonel Lira, Jesús Xamán, and Yvonne Chávez [CENIDET]. Medición de conductividad térmica de materiales de construcción. Proceedings of the ISES Millennium Solar Forum 2000, pages 105–108, 2000.
- [20] Loenel Lira, Jesús Xamán, and Yvonne Chávez [CENIDET]. Análisis del campo de temperatura de la guarda de un instrumento para medir la conductividad térmica de materiales sólidos aislantes. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 109–112, 2000.
- [21] Karla Marroquín [FA-UNAM]. Análisis de las propiedades térmicas y ópticas de algunos materiales de construcción. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 151–154, 2000.

- [22] Leonel Lira, Yvonne Chávez, and Jesús Xamán [CENIDET]. Determinación del coeficiente de expansión térmica lineal de materiales plásticos. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 85–88, 2001.
- [23] Leonel Lira, Yvonne Chávez, Gabriela Álvarez, and Jesús Xamán [CENI-DET]. Determinación de la transmisión de luz de materiales plásticos. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 143–147, 2001.
- [24] Liván Hernández [Centro de Estudios de la Construcción y Arquitectura / Instituto Superior Politécnico José A. Echeverría]. Ahorro energético en la utilización de materiales de construcción estableciendo las dosificaciones óptimas de estabilizadores, explotando la capacidad de intercambio iónico del suelo. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 35–39, 2002.
- [25] Oscar Resendiz, Oscar González, Federico Poujol, and Alfredo Flores [UABCS]. Efectos del uso de poliuretano en la reducción de la temperatura en un edificio de la Universidad Autónoma de Baja California Sur. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 83–85, 2002.
- [26] Oscar González, Federico Poujol, Oscar Reséndiz, and Alfredo Flores [UABCS]. Comparación técnico-económica del uso de dos recubrimientos en el techo de un aula en clima cálido-seco. Memoria de la XXVII Semana Nacional de Energía Solar, pages 49–53, 2003.
- [27] Rafeal Alavez [IPN], Rubén Dorantes, Victor Fuentes, and Humberto Medel [UAM]. Diseño, construcción y pruebas operativas de un conductivímetro para la determinación de propiedades térmicas en elementos multicompuestos. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 71–74, 2004.
- [28] Irene Marincic and Manuel Ochoa [UNISON]. Análisis de los efectos de la utilización de nuevos materiales aislantes en viviendas en clima cálido seco. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 87–90, 2004.
- [29] Luis Fajardo and Armando Alcántara [UCOL]. Vegetación en cubiertas como sistema pasivo de enfriamiento en el cálido-subhúmedo: caso techo-pasto. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 89–92, 2006.

- [30] Jesús Chávez, Rafael Almanza, Neftalí Rodríguez, and Laura Santiago [II-UNAM]. Evaluación experimental de propiedades térmicas de materiales de construcción nacionales. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 127–132, 2006.
- [31] Inocente Bojórquez [UQROO], Liván Hernández, and Emigdo Suárez [Instituto Superior Politécnico José Antonio Echeverría]. Conductividad térmica en compuestos polifásicos con refuerzo de origen orgánico y matriz de cemento Pórtland. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 183–186, 2006.
- [32] Claudia Calderón [UAM]. Adecuación bioclimática de la vivienda tradicional de adobe y madera en Ensenada, Baja California. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-14, 2008.
- [33] Inocente Bojórquez, Set Castillo, and Lorena Puc [UQROO]. Propiedades térmicas de materiales utilizados para la edificación de vivienda en el Caribe Mexicano. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–30, 2008.
- [34] Ana Borbón, Rafael Cabanillas, Jesús Pérez, José Dimas, and Renée Mendoza [UNISON]. Diseño y construcción de un prototipo experimental para estudiar la resistencia térmica en un muro de bloques de concreto. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–41, 2008.
- [35] Julia Solís and Gabriel Castañeda [UACH]. La vegetación como estrategia proyectual bioclimática para la vivienda en clima cálido subhúmedo. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–18, 2009.
- [36] Inocente Bojórquez, Lorena Puc [UQROO], and Jesús Castillo [I.T. de Chetumal]. Estudio sobre la eficiencia térmica de materiales utilizados en la arquitectura vernácula del Caribe Mexicano. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–34, 2009.
- [37] Roberto García, Iratzio Esquivel, and Carlos Ávila [UAM]. Análisis paramétrico de variables físicas en módulos experimentales como apoyo didáctico para evaluar el comportamiento térmico de materiales constructivos. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–59, 2009.

- [38] Ana Borbón, Rafael Cabanillas, and Jesús Pérez [UNISON]. Determinación experimental de la resistencia térmica en muros de bloque de concreto hueco. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–61, 2009.
- [39] Ana Avendaño and Verónica Huerta [UAM]. Análisis del comportamiento térmico de los materiales comúnmente utilizados en la construcción de edificios residenciales. Caso de estudio: componentes verticales, ladrillo perforado, block cemento-arena y concreto. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–51, 2010.
- [40] Jorge Álvarez, Ignacio Martín, and María Alarcón [CIMAV]. Diseño físico y térmico de una caseta prototipo para determinar experimentalmente el flujo térmico a través de varias losas para techumbre, aisladas con diversos recubrimientos. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-60, 2010.
- [41] Ana Borbón, Rafael Cabanillas, Jesús Pérez, and Fernando Hinojosa [UNI-SON]. Validación de un modelo teórico para el cálculo de la resistencia térmica de un muro de bloques de concreto hueco. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-77, 2010.
- [42] Victor Hernández, David Morillón, and Luis Fernández [II-UNAM]. Envolvente de una edificación como reducción de la radiación solar. Memoria de la XXVI Semana Nacional de Energía Solar, pages 125–130, 2002.
- [43] Manuel Ochoa, Irene Marincic, and Jacqueline Aguilar [UNISON]. Evaluación energética de tres viviendas en ambientes desérticos urbanos. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 149–153, 2003.
- [44] Rafeal Alavez [IPN], Rubén Dorantes, Victor Fuentes, and Humberto Medel [UAM]. Propuesta de diseño y pruebas térmicas de techos escudos multicompuestos con el uso de materiales vegetales e industrializados para climas cálidos húmedos. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 65–70, 2004.
- [45] María Corral, Ricardo Gallegos, and Aníbal Luna [UABC]. Monitoreo experimental de sistemas constructivos para muro más usuales en la vivienda de regiones de clima cálido extremo: Mexicali, B.C. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 165–170, 2004.

- [46] Luis Jiménez, Gabriel Castañeda, Teresa Agüello, Carlos Cruz [UACH], and Francisco Vecchia [Escuela de Ingeniería de USP]. Evaluación del comportamiento térmico de vivienda social techada con el sistema placa-losa, ubicada en el proyecto 10x10 Chiapas, Tuxtla Gutiérrez. Memoria de la XXIX Semana Nacional de Energía Solar, pages 49–54, 2005.
- [47] Vicente Flores [I.T. de Apizaco]. Experiencias en el manejo de materiales constructivos naturales (adobe y tepetate). Memoria de la XXX Semana Nacional de Energía Solar, pages 85–88, 2006.
- [48] Gilberto Gameros, Gabriel Gómez, and Armando Alcántara [UCOL]. Agua encapsulada como amortiguador térmico sobre losas de concreto. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–32, 2007.
- [49] Gabriel Castañeda [UACH], Francisco Vecchia [U. de Sao Paulo], and Norma Rodríguez [I.T. de Juchitán]. Comparación experimental del comportamiento térmico de dos sistemas de techo para vivienda social en Tuxtla Gutiérrez, Chiapas, México. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-09, 2007.
- [50] Sildia Mecott, Jesús Cano, Rafael Alavez [IPN], Ricardo Gallegos, Gonzalo Bojórquez, and Aníbal Luna [UABC]. Comportamiento térmico y diseño bioclimático de un prototipo de vivienda para Oaxaca, Oaxaca. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–30, 2007.
- [51] Omar Cortés, David Morillón [II-UNAM], and Alejandro Mesa [CRICYT]. Caracterización térmica de los sistemas constructivos comunes en techos y muros de la vivienda vs la normatividad oficial sobre el tema, en los diversos bioclimas de México. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-47, 2008.
- [52] Bruno Palomino and Rocío López [FA-UNAM]. Aplicaciones paisajistas del Sedum para el aligeramiento de sustratos sobre azoteas verdes. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-14, 2010.
- [53] Inocente Bojórquez, Fernando Flores, and Arturo Llovera [UQROO]. Fibras orgánicas del sureste mexicano como opción para ahorro de energía en la vivienda. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 47–49, 2002.

- [54] Aníbal Luna, Gonzalo Bojorquez, Ricardo Gallegos [UABC], Inocente Bojórquez, Fernando Flores, and Arturo Llovera [UQROO]. Simulación de comportamiento térmico de materiales constructivos a base de fibras leñosas. Memoria de la XXVI Semana Nacional de Energía Solar, pages 69–72, 2002.
- [55] Rafael Alavez [IPN], Leonel Lira [CENIDET], Victor Fuentes, and Gustavo Marbán [UAM]. Comportamiento termofísico de materiales como alternativa de construcción. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 33–36, 2003.
- [56] Jesús Chávez and Rafael Almanza [II-UNAM]. Filtros solares con base en hierro para su uso en ventanas ahorradoras de energía. Memoria de la XXVII Semana Nacional de Energía Solar, pages 65–68, 2003.
- [57] Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos [UABC], Jorge Aguilar, and Oscar Gómez [CIE-UNAM]. Carga térmica por el uso de vidrios laminados con películas delgadas semiconductoras y vidrios comerciales. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 67–72, 2006.
- [58] Aníbal Luna, Gonzalo Bojórquez, and Ricardo Gallegos [UABC]. Simulación térmica de concreto de silice, aplicado en la envolvente arquitectónica de una vivienda tipo Infonavit. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 61–64, 2001.
- [59] Gabriel Castañeda, Ruber Trujillo [UACH], and Francisco Vecchia [U. de Sao Paulo]. Comportamiento térmico de tres sistemas de techo en Tuxtla Gutiérrez, Chiapas, México. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-04, 2008.
- [60] Luis Vargas [UNISON], Gonzalo Bojórquez [UABC], and Inocente Bojórquez [UQROO]. Material compuesto a base de periódico, cal y alumbre. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–36, 2008.
- [61] Andrés Quiroa, Francisco Vecchia [U. de Sao Paulo], Gabriel Castañeda, and Carlos Cruz [UACH]. Comportamiento térmico de las láminas de aglomerado Tetra Pak. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–42, 2008.
- [62] Gabriel Castañeda, Luis Jiménez, Carlos Cruz [UACH], and Glacir Fricke [Pontificia U. Católica]. Evaluación experimental del desempeño térmico de

- techo alternativo para vivienda. *Memoria de la XXXIII Semana Nacional de Energía Solar*, 2009.
- [63] Héctor Valerdi, Aníbal Figueroa, Manuel Gordon, and Miguel Ferrer [UAM]. Evaluación de las características termofísicas de un sistema constructivo desarrollado con botellas recicladas de PET. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-54, 2010.
- [64] Cecil Martínez, Demián Carmona [U. Xochicalco], Roberto Calderón, and Ricardo Gallegos [UABC]. Envases Tetra-Pak: Una alternativa sustentable para la construcción de vivienda de bajos recursos en Mexicali, B.C. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–76, 2010.
- [65] Luis Vargas [UNISON] and Miguel Elizondo [UCOL]. Caracterización física y mecánica de un material compuesto. Memoria de la XXX Semana Nacional de Energía Solar, pages 109–114, 2006.
- [66] Jessica Trujeque [IPN]. Bambusa Bulgaris: propiedades físicas para uso en la construcción. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–33, 2009.
- [67] Inocente Bojórquez, Set Castillo, and Moen Máximo [UQROO]. Propiedades térmicas de maderas tropicales utilizadas en las viviendas. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-08, 2010.
- [68] Rocío López, Diego Morales, Alma Ortega [FA-UNAM], and Miguel Canseco [IIM-UNAM]. Una paleta vegetal para cubiertas verdes en climas templados subhúmedos. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–13, 2010.
- [69] Inocente Bojórquez [UQROO] and Annel Cardeña [I.T. de Chetumal]. Criterios para determinar las dimensiones mínimas de una vivienda energéticamente eficiente en un clima cálido-subhúmedo. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–21, 2010.
- [70] Lorena Ávila, Victor Fuentes [UAM], Leonel Lira, and Saúl García [CE-NAM]. Conductividad térmica de las pencas de maguey. Evaluación del comportamiento térmico en busca de materiales alternativos para nuevas construcciones. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-33, 2010.

[71] Luis Herrera [UACJ] and Armando Valenzuela [Escuela de Arquitectura y Diseño de América Latina y el Caribe]. Evaluación térmica de los principales sitemas constructivos de cubiertas en Chihuahua. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–40, 2010.

7. Ventilación

El estudio de la ventilación trata del movimiento del aire a través y dentro de una edificación. Para fines bioclimáticos, la ventilación guarda un carácter pasivo, o sea que no se consume energía para llevarse a cabo, o el consumo es relativamente bajo. La ventilación influye en el confort higrotérmico de una edificación, así como en la calidad del aire dentro de ésta.

Se han publicado 23 trabajos sobre este tema en los congresos de la ANES, del 2000 al 2010. El grupo que más artículos ha presentando ha sido la Universidad Autónoma Metropolitana, con Victor Fuentes (4 publicaciones), seguido por Manuel Rodríguez y Evelyn Moreno (2); y en menor medida, el Instituto Politécnico Nacional, con Gerardo Romero (2).

En el 2000, Simon Bright aplica un sistema de ventilación por convección natural, a un teatro con problemas de confort, por medio de entradas con trampas acústicas que evitan el ingreso del ruido proveniente del exterior [1].

En el 2002, Jesús Chávez y David Morillón presentan una propuesta de un sistema pasivo de ventilación-deshumidificación el cual permite aprovechar la frecuencia y velocidad de los vientos de la región, ventilando el interior de una habitación pero deshumidificando antes el aire [2].

Alicia Martínez y Diego Morales desarrollan un estudio cualitativo del aprovechamiento del viento y la ventilación en la arquitectura. Se mencionan algunos sistemas pasivos para ventilar y sus características [3].

Victor Fuentes y Manuel Rodríguez muestran las fórmulas básicas para cálculos de ventilación natural con el fin de proporcionar aire puro y para efectos de climatización [4].

Manuel Rodríguez y Victor Fuentes definen el concepto de confort olfativo y calidad de aire y tratan de establecer algunos criterios o parámetros en cuanto a renovación del aire [5].

Alfredo Fernández muestra la manera en que el efecto chimenea es utilizado en muros trombe y chimeneas solares en una casa muestra, en Tailandia [6].

En el 2003, Victor Fuentes y Manuel Rodríguez pretenden establecer la importancia de la ventilación natural como estrategia básica de climatización en la arquitectura bioclimática. Se basan en fórmulas como la de Fanger [7].

Aníbal Figueroa y Gloria Castorena muestran los resultados del análisis y las correspondientes propuestas bioclimáticas que buscan mejorar las condiciones de funcionamiento y de confort en un local audiovisual existente. La propuestas más importante es un sistema de renovación de aire natural-mecánico [8].

En el 2004, Jaime Martí y Rosario Heras evalúan diferentes modelos para tratar las pérdidas convectivas de calor debidas al viento en un modelo energético dinámico de una chimenea solar con inercia térmica. Se concluye que estos modelos deberían de tomar en cuenta la dirección del viento y no solamente la velocidad [9].

En el 2007, Andrea Fernández y Verónica Huerta presentan el túnel de viento como un dispositivo que permite generar una corriente de aire con características conocidas y controladas, con el fin de efectuar experimentos que reproduzcan las condiciones reales de la acción del viento sobre un objeto o maqueta. Exponen una breve historia de este dispositivo [10].

Carolina Saldaña e Inocente Bojórquez realizan una simulación en un túnel de viento, en donde se observa su movimiento por medio de humo. Se diseñaron tres modelos a escala 1:100, variando la forma del techo, la inclinación con respecto al viento y la forma de acomodarlos entre sí. La techumbre inclinada a un agua, a 90° fue la opción más adecuada, y en cuanto al arreglo, el mejor fue el sistema escalonado [11].

Francisco Sol, Alonso Fernández y Pedro Montes realizan el cálculo matemático de ventilación natural propuesto por Victor Fuentes (UAM) para corroborar si el diseño y las dimensiones de las ventanas del aula-sala de juntas del IPN-Unidad Oaxaca son las correctas. El resultado indica que el edificio cumple con los requerimientos de la NOM-008-ENER-2001 [12].

María Pérez, Carmen Ponce y Carmen García realizan un estudio bioclimático y microbiológico para evaluar la calidad del aire en la vivienda tipo palafito, comparándola con la vivienda tradicional en San Cristano, Yucatán. Utilizan el programa Meteonorm para la simulación. Se concluye que la ventilación es suficiente para remover los contaminantes [13].

Roberto García, Juan Ambriz, Hernando Romero y Julieta Acuña presentan los resultados de pruebas experimentales realizadas en una cámara de ambiente controlado, en torno a la percepción del confort higrotérmico de los ocupantes y su relación con el movimiento del aire [14].

En el 2008, Iván Oropeza muestra los beneficios que se presentan al utilizar la ventilación natural como un sistema pasivo de climatización en diferentes zonas de México. Presenta los atlas de factor de ahorro de aire acondicionado al utilizar ventilación natural, para todos los meses [15].

Verónica Huerta, Luis García, Guillermo Corro, Andrea Fernández y César Real presentan el túnel de viento instalado en la UAM, el cual proporciona una corriente de aire con las características deseadas, de manera que en su cámara de ensayos pueden realizarse pruebas al hacer incidir esta corriente sobre obje-

tos reales o maquetas a escala. Este método facilita el empleo de técnicas de visualización mediante humos, partículas, hilos, etc. [16].

En el 2009, José Moreno, Paulina Martínez y Francisco Sánchez visualizan la dinámica de la ventilación, por medio de la simulación en un túnel de viento con humo, en una edificación del siglo XIX en Colima. Establecen que los elementos principales de este tipo de arquitectura para adaptarse al clima son el patio central, los pórticos y las contraventanas [17].

Joyce Almeida estudia las características climatológicas y atmosféricas de la Ciudad de México y los efectos nocivos en el ser humano, así como la calidad del aire al interior de edificios ubicados en la zona centro de la ciudad, para establecer si es viable el uso de ventilación natural aunado a un sistema de purificación, en lugar del aire acondicionado [18].

Muestra los dos métodos más simplificados y útiles para determinar el comportamiento del flujo del aire en el interior y exterior de una vivienda: Túnel de Viento y CFD (Computational Fluid Dynamic) [19].

En el 2010, Evelyn Moreno, Victor Fuentes y Gerardo Romero presentan las simulaciones realizadas en CFD (Computational Fluid Dynamic), aplicadas a un espacio típico de vivienda. Los resultados permiten visualizar en dos dimensiones el comportamiento y velocidad del flujo de aire en el interior de un espacio [20].

Hugo Baez y Manuel Gordon presentan un estudio teórico-experimental de una chimenea solar como sistema de ventilación. Se simulo este dispositivo en un modelo de acrílico y se visualizó el comportamiento del aire utilizando el software PIV (Particle Image Velocimeter) [21].

Liliana Campos utiliza el túnel de viento y simulaciones con el software Fluent para analizar la dinámica del viento en nueve configuraciones de un conjunto de edificios, modificando su orientación y la separación entre los mismos. Asimismo, se tiene el objeto de analizar posibles puntos de integración de pequeñas turbinas eólicas para la generación de electricidad [22].

César Real, Rosalba Orduña, José María Velázquez, Verónica Huerta y Jesús González realizan un análisis comparativo entre dos métodos para la evaluación del comportamiento del viento. El primero es a través de simulación numérica y el segundo es mediante túnel de viento sobre un modelo físico a escala [23].

Referencias

[1] Simon Bright [Solarco Ltda]. Ventilación por convección natural y balance térmico: Teatro Jorge Eliecer Gaitan - Bogota - Colombia. *Proceedings of*

- the ISES Millennium Solar Forum 2000, pages 139-142, 2000.
- [2] Jesús Chávez and David Morillón [II-UNAM]. Sistema pasivo de ventilación-deshumidificación. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 31–34, 2002.
- [3] Alicia Martínez and Diego Morales [FA-UNAM]. Sistemas de ventilación natural para la Ciudad de México. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 57–62, 2002.
- [4] Victor Fuentes and Manuel Rodríguez [UAM]. Ventilación natural en la arquitectura. Memoria de la XXVI Semana Nacional de Energía Solar, pages 673–678, 2002.
- [5] Manuel Rodríguez and Victor Fuentes [UAM]. Confort olfativo, calidad y renovación del aire en los interiores de las edificaciones. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 679–684, 2002.
- [6] Alfredo Fernández [Center for Energy Research]. Utilización de muros Trombe y chimeneas solares para limitar la ganancia solar y ventilar de manera natural edificaciones localizadas en climas cálido-húmedos. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 713–718, 2002.
- [7] Victor Fuentes and Manuel Rodríguez [UAM]. El efecto de la ventilación en la sensación de confort. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 59–64, 2003.
- [8] Aníbal Figueroa and Gloria Castorena [UAM]. Evaluación, análisis y propuestas de adecuacíon bioclimática en la sala audiovisual K001. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 79–82, 2003.
- [9] Jaime Martí and Rosario Heras [CIEMAT]. Evaluación de modelos físicos para describir el comportamiento energético de una chimenea solar. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 37–42, 2004.
- [10] Andrea Fernández and Verónica Huerta [UAM]. Túnel de viento: herramienta para estudios de modelos en la arquitectura bioclimática. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–10, 2007.
- [11] Carolina Saldaña and Inocente Bojórquez [UQROO]. Análisis del comportamiento de la ventilación exterior en climas cálido-húmedos. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–13, 2007.

- [12] Francisco Sol, Alonso Fernández, and Pedro Montes [IPN]. Evaluación de la ventilación pasiva y energética-económica del proyecto arquitectónico bioclimático aula-sala de juntas del CIIDIR-IPN Unidad Oaxaca. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–31, 2007.
- [13] María Pérez, Carmen Ponce, and Carmen García [UADY]. Calidad del aire en la vivienda tipo palafito situada en el clima cálido húmedo. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–36, 2007.
- [14] Roberto García, Juan Ambriz, Hernando Romero, and Julieta Acuña [UAM]. Percepción de las condiciones de confort higrotérmico en relación con el flujo de aire en la cámara de ambiente controlado. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–38, 2007.
- [15] Iván Oropeza [II-UNAM]. Estudio para el aprovechamiento de la ventilación natural en diversas ciudades de la República Mexicana. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-39, 2008.
- [16] Verónica Huerta, Luis García, Guillermo Corro, Andrea Fernández, and César Real [UAM]. Técnicas de visualización del flujo en túnel de viento. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-48, 2008.
- [17] José Moreno, Paulina Martínez, and Francisco Sánchez [I.T. de Colima]. Efecto de la ventilación en el confort térmico en Colima (análisis retrospectivo). Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-25, 2009.
- [18] Joyce Almeida [FA-UNAM]. Ventilación natural y calidad en el ambiente interior de edificios para oficinas en la Ciudad de México. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-27, 2009.
- [19] Evelyn Moreno, Victor Fuentes [UAM], and Gerardo Romero [IPN]. Métodos que determinan el comportamiento del flujo del aire en una edificación. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–31, 2010.
- [20] Evelyn Moreno, Victor Fuentes [UAM], and Gerardo Romero [IPN]. Análisis del comportamiento del flujo de aire aplicado a un espacio de vivienda, mediante simulaciones de CFD. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–32, 2010.

- [21] Hugo Baez and Manuel Gordon [UAM]. Extracción de aire con chimenea solar para la ventilación natural. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–46, 2010.
- [22] Liliana Campos [Low Carbon Architecture]. Evolución del recurso eólico para generación de energía eléctrica en zonas urbanas. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-47, 2010.
- [23] César Real, Rosalba Orduña, José María Velázquez, Verónica Huerta, and Jesús González [UAM]. Análisis experimental y numérico de la ventilación natural. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–78, 2010.

8. Protección solar

El criterio de protección solar abarca a todos aquellos dispositivos que fungen como escudo ante la radiación del sol. Estos dispositivos pueden formar parte del diseño integral de la edificación o añadirse con el fin de adecuarla bioclimáticamente. La protección solar tiene una influencia importante sobre las ganancias térmicas de la edificación.

Se han publicado 17 artículos en los congreso de la ANES, del 2000 al 2010. Los grupos que han publicado más de un artículo son el Instituo de Ingeniería de la UNAM, con David Morillón (3 publicaciones); la Universidad de Chiapas, con Gabriel Castañeda (2); y la Universidad Autónoma de Baja California, con Eduardo Vázquez (2).

En el 2000, Manuel Rodríguez y Victor Fuentes reflexionan sobre la tradición y evolución del uso de dispositivos de control solar. Se exponen diversos elementos de protección solar; se definen y se muestran ilustraciones para cada uno [1].

María Machado, Carlos Quirós y Dalmary Rubio determinan la influencia que tiene la dimensión del retranqueo de las ventanas en las ganancias de calor y las temperaturas del aire interior [2].

Rafael Cabanillas, Jesús Pérez, Saúl Robles y Héctor Villa presentan el desarrollo de un sitio interactivo en Internet que pretende servir de apoyo para los cálculos básicos de control de asoleamiento en viviendas y edificios [3].

En el 2001, David Mejía, David Morillón y Luis Rodríguez obtienen el potencial estimado de ahorro de energía en aire acondicionado que se tendría si las viviendas se construyeran con control solar (quiebrasoles y aleros) [4].

En el 2002, Argelia Crisóstomo y David Morillón proporcionan los ángulos óptimos para dispositivos de control solar para diversas orientaciones en Chetumal, Quintana Roo [5].

En el 2003, Luis Herrera analiza los elementos de protección solar (aleros y partesoles) para 12 orientaciones en la ciudad de Chihuahua [6].

En el 2004, Adolfo Gómez, Armando Alcántara y Érika Alvarado tratan del uso de la ventana. La exponen como un dispositivo privilegiado de conexión entre interior y exterior [7].

Eduardo Vázquez, Aníbal Luna y Manuel Ochoa proponen un análisis sistematizado de ventanas considerando las variables sol, luz y viento, con el fin de lograr un diseño adecuado. Uno de los objetivos es que este estudio se tenga en cuenta en el Reglamento de Edificaciones de Mexicali [8].

José Romero y Raúl Canto plantean criterios de protección solar como parte

del diseño arquitectónico, que propicien una mejoría significativa para la vivienda producida masivamente en Cancún, Quintana Roo [9].

En el 2005, Eduardo Vázquez presenta el proyecto "Tonati", ubicado en el Centro Escolar Integral de Mexicali, el cual es un área de usos múltiples con una cubierta que sombrea en verano y permite su asoleamiento en invierno. Es además un calendario astronómico, reloj y calendario solar, y a su vez, un almanaque solar para celebrar con rayos de sol cualquier evento [10].

Jorge Rosas y David Morillón emiten recomendaciones para el diseño de los elementos de control solar, como aleros y partesoles, con el fin de lograr mejor iluminación y confort. Se analiza la reducción en el consumo eléctrico debido a la incorporación de estos elementos [11].

En el 2006, Carlos Cruz, Gabriel Castañeda, Luis Jiménez, María de Lourdes Carpy, Arcadio Zebadúa y Francisco Vecchia demuestran el efecto que tiene la protección de la vegetación sobre los edificios ante la radiación solar directa [12].

En el 2008, Aníbal Figueroa y Gloria Castorena documentan un experimento realizado a escala real: una azotea protegida con una cubierta ligera, semi-opaca y flexible. La investigación se llevó a cabo en la Ciudad de Cuernavaca, Morelos. Se alcanzó a eliminar el 50 % de la carga térmica por radiación a lo largo del año [13].

Iván Oropeza muestra diferentes casos en donde se utilizan elementos de control solar en la Ciudad Universitaria de la Cd. de México y se analiza su dirección, orientación y si en verdad están ayudando al control solar. De esta manera se hacen recomendaciones particulares [14].

En el 2009, Juan Solís, Raúl Ruiz y Gabriel Castañeda comparan el comportamiento térmico de dos viviendas verticales, una con malla que sombrea la pared de una habitación. Se midieron las temperaturas superficiales interiores de los muros y se encontró que la estrategia propuesta mejora el desempeño térmico ante la radiación solar. Sin embargo, después de las 22 horas, en el muro sin protección desciende más la temperatura debido al enfriamiento convectivo [15].

Daniel Solís simula, por medio de DesignBuilder, el consumo eléctrico al sombrear parcial y totalmente distintas viviendas con datos climáticos de 6 ciudades con clima cálido-seco. Se concluye que el uso de aleros y persianas reducen alrededor del 4 % el consumo eléctrico, mientras que un sombreado completo (por medio de una lona tensada) lo reduce un 14 % [16].

En el 2010, Roberto García y Angélica Ramos presentan un análisis de los problemas ocasionados por no contar con elementos de control solar. Se presenta una breve historia de estos elementos y se propone su integración en las edificaciones [17].

Referencias

- [1] Manuel Rodríguez and Victor Fuentes [UAM]. Antecedentes y evolución de los sistemas de control solar en la arquitectura. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 53–58, 2000.
- [2] María Machado, Carlos Quirós, and Dalmary Rubio [Universidad de Zulia]. El retranqueo y su influencia en la evolución de las temperaturas interiores de edificios en climas cálidos húmedos. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 75–80, 2000.
- [3] Rafael Cabanillas, Jesús Pérez, Saúl Robles, and Héctor Villa [UNISON]. Desarrollo de una aplicación en Internet (applet) para el cálculo de dispositivos de control solar. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 163–165, 2000.
- [4] David Mejía, David Morillón, and Luis Rodríguez [II-UNAM]. Impacto de las protecciones solares en la disminución de la carga térmica de la vivienda tipo Infonavit. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 27–31, 2001.
- [5] Argelia Crisóstomo [UQROO] and David Morillón [II-UNAM]. Recomendaciones para el diseño del control solar de edificios en Chetumal, Quintana Roo. Memoria de la XXVI Semana Nacional de Energía Solar, pages 151–154, 2002.
- [6] Luis Herrera [Instituto Superior de Arquitectura y Diseño de Chihuahua]. El uso de aleros y partesoles como estrategia de bajo impacto para espacios habitables. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 139–148, 2003.
- [7] Adolfo Gómez, Armando Alcántara, and Érika Alvarado [UCOL]. La ventana en la tradición constructiva del trópico subhúmedo. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 33–35, 2004.
- [8] Eduardo Vázquez, Aníbal Luna [UABC], and Manuel Ochoa [UNISON]. Estudio de aislamiento de ventanas en edificaciones de uso habitacional en Mexicali. Bases técnicas para la revisión del Reglamento Municipal de Edificaciones. Parte I. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 43–47, 2004.

- [9] José Romero and Raúl Canto [UADY]. Evaluación climática y criterios de protección solar para el diseño de la vivienda producida masivamente en Cancún, Q. Roo. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 129–134, 2004.
- [10] Eduardo Vázquez [UABC]. Proyecto ecológico tonati: almanaque astronómico, reloj, calendario y efemérides solar en Mexicalli, BC., México. Memoria de la XXIX Semana Nacional de Energía Solar, pages 115–120, 2005.
- [11] Jorge Rosas and David Morillón [II-UNAM]. Análisis de los elementos de control solar en la arquitectura para clima cálido seco y su impacto en el consumo de energía eléctrica: caso de estudio Hermosillo, Sonora. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 103–106, 2005.
- [12] Carlos Cruz, Gabriel Castañeda, Luis Jiménez, María de Lourdes Carpy, Arcadio Zebadúa [UACH], and Francisco Vecchia [U. de Sao Paulo]. El recurso biótico en la arquitectura. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 161–164, 2006.
- [13] Aníbal Figueroa and Gloria Castorena [UAM]. Evaluación del uso de malla de sombra como protección solar para construcciones climatizadas naturalmente en zonas cálidas. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–13, 2008.
- [14] Iván Oropeza [II-UNAM]. Elementos de control solar en la UNAM: Caso de estudio, Ciudad Universitaria. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-40, 2008.
- [15] Juan Solís, Raúl Ruiz, and Gabriel Castañeda [UACH]. Comparación del comportamiento térmico en vivienda vertical en clima cálido subhúmedo utilizando malla sombra. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-05, 2009.
- [16] Daniel Solís [II-UNAM]. Análisis térmico en medidas de sombreado aplicadas a vivienda económica con alta carga térmica interna en 6 ciudades con clima cálido-seco. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-23, 2009.
- [17] Roberto García and Angélica Ramos [UAM]. Sistemas de control solar para ahorro energético y confort térmico en edificios. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-83, 2010.

9. Acondicionamiento higrotérmico

El acondicionamiento higrotérmico consiste en modificar la temperatura y/o la humedad en una edificación. Bajo un criterio bioclimático, el acondicionamiento se lleva a cabo por medio de sistemas pasivos y/o de bajo consumo de energía.

La finalidad del acondicionamiento térmico puede ser calentar o enfriar; en cuanto el acondicionamiento hígrico el propósito puede ser aumentar o disminuir la humedad. Por ende, esta sección se divide en cuatro subsecciones: enfriamiento, calentamiento, sistemas duales y deshumidificación. A su vez, las subsecciones de enfriamiento y calentamiento se dividen en sistemas pasivos y sistemas de bajo consumo de energía.

Se han presentado 30 trabajos sobre acondicionamiento higrotérmico en los congreso de la ANES del 2000 al 2010. Algunos de los trabajos aparecen más de una vez ya que pertenecen a dos subsecciones. Dentro de estos artículos, 18 son relativos al enfriamiento, 9 se enfocan al calentamiento, 3 tratan sobre un sistema dual, y 3 hablan sobre la deshumidificación.

En torno al enfriamiento, los grupos con más publicaciones son el Instituto de Ingeniería de la UNAM, con David Morillón (10 publicaciones); la Facultad de Estudios Superiores-Cuatitlán de la UNAM, con Victor Hernández (5) y Hermenegildo Bonifacio (2); y el Centro de Investigación en Energía de la UNAM, con Jorge Rojas (3), Ramón Tovar (3) y Pablo Elías (2).

Con respecto al calentamiento, los grupos que publicaron más de un trabajo son la Universidad Autónoma Metropolitana, con Aníbal Figueroa y Gloria Castorena (4), y la Facultad de Arquitectura de la UNAM, con Diego Morales (2).

9.1. Enfriamiento

9.1.1. Sistemas pasivos

En el 2001, Victor Hernández y David Morillón presentan el uso del muro captor y almacenador (similar al muro trombe: convección natural entre placas) como sistema pasivo de enfriamiento, así como un análisis de publicaciones sobre el tema [1].

María Corral y Ramona Romero determinan el impacto de estrategias y técnicas de adecuación pasiva de la vivienda popular en el confort y su relación con el uso de sistemas de enfriamiento mecánico [2].

En el 2003, Carlos Carrazco y David Morillón describen las consideraciones bioclimáticas para el diseño y uso del patio central como sistema pasivo de enfriamiento para el caso de Culiacán, Sinaloa [3].

Victor Hernández y David Morillón proponen un modelo analítico que permite simular el comportamiento térmico de un sistema de descarga de calor en muros verticales. Para su validación se construyó un modelo experimental bajo el principio del muro Trombe [4].

En el 2004, Victor Hernández, Hermenegildo Bonifacio, David Morillón y Pedro Guzmán presentan los resultados obtenidos al evaluar un sistema de descarga de calor (muro de Trombe), empleando un modelo analítico para la simulación de su funcionamiento. Se observó hasta un 16 % de reducción de ganancia de calor [5].

En el 2005, Hermenegildo Bonifacio, Alberto Cruz, Victor Hernández y David Morillón presentan una propuesta de climatización pasiva para enfriamiento y deshumidificación (con entrada de aire sumergida y deshumificación con base en el principio de muro Trombe) [6].

En el 2006, Pablo Elías, Leandro Sandoval y Adalberto Tejeda utilizan la metodología de B. Givoni para calcular el potencial de enfriamiento evaporativo en la ciudad de Colima, considerando un dispositivo de fase aislada (single-stage) [7].

J. Pilatowsky, A. Oskam, D. Morillón y G. Ramos proponen la utilización de un sistema termosolar basado en el principio de absorción para casas de interés social [8].

Alejandro Mesa, Victor Hernández, Diego Morales y David Morillón evalúan el potencial de los sistemas de descarga de calor (como muro captor y almacenador de calor) en las ciudades de México, Guadalajara, Colima y Mexicali. Se concluye que dichos sistemas son factibles en los diversos climas analizados y presentan un buen funcionamiento en la orientación sur, y para latitudes arriba de 23° norte, también en las orientaciones este y oeste [9].

Jorge Rosas y David Morillón estudian las características de la demanda energética residencial en la región noroeste de México. Se estima un potencial de ahorro de 35 % con base en el uso de sistemas de control solar y aislamiento de las viviendas [10].

En el 2007, Victor Hernández, José Fernández y David Morillón realizan un cálculo numérico para determinar la carga térmica que debe retirarse de un cuarto climatizado con aire acondicionado y se comparó con la carga térmica que se tendría al emplear además un sistema de muro de descarga de calor [11].

Daniel Solís realiza un análisis exergético para determinar cuantitativamente

cómo el uso de sistemas pasivos, como el techo escudo de los cubículos del CIE, ahorran exergía en un ambiente cálido húmedo (Temixco, Morelos) [12].

En el 2009, Jorge Rojas, Guadalupe Huelsz, Ramón Tovar, Pablo Elías-López y Guadalupe Alpuche presentan un análisis del comportamiento térmico del Auditorio Tonatiuh del CIE, localizado en Temixco, Morelos. Se encontró que las temperaturas por arriba del confort se presentaban en el 20 % de las horas medidas. Se propuso el uso de ventilación nocturna para incrementar el tiempo de confort [13].

Pablo Elías-López, Jorge Rojas, Adán Espuma y Rubén Roux analizan las condiciones de temperatura de bulbo húmedo, bulbo seco y humedad relativa de la localidad de Temixco, Morelos, para determinar el potencial del enfriamiento evaporativo. Se deduce que este sistema es eficaz para los meses de marzo a junio [14].

9.1.2. Sistemas de bajo consumo de energía

En el 2003, Aníbal Luna, Gonzalo Bojórquez y Ricardo Gallegos pretenden demostrar que un sistema híbrido (de enfriamiento por compresión de vapor y de enfriamiento evaporativo) es factible de utilizarse de acuerdo al clima de Mexicali. Por medio de un sistema de control con termostato se puede definir cuándo funciona el sistema de enfriamiento evaporativo, y cuando éste no sea suficiente, el de compresión de vapor [15].

En el 2005, Andrés Andrade y David Morillón presentan un sistema híbrido de enfriamiento de aire, utilizando un intercambiador de calor con flujo cruzado; con tubos de cobre, sobre una placa de madera y cabezales de plástico [16].

En el 2009, Ramón Tovar y Antonio Castillo desarrollan un modelo teórico, que se valida con experimentos, de la transferencia de calor en una habitación con un techo frío y una fuente de calor puntual en el piso. Se circula fluido mecánicamente a través del techo y se utilizan depósitos de agua fría o la capa superior de la tierra como sumideros de calor [17].

En el 2010, Martín Rivero, Isaac Pilatowsky, Octavio García, Jorge Rojas, Ramón Tovar y José Muñoz diseñan, construyen y evalúan dos tipos de sistemas de radiadores nocturnos, cada uno con diferente recubrimiento de alta emisividad. Se concluye que los prototipos poseen un potencial de enfriamiento considerable. [18].

9.2. Calentamiento

9.2.1. Sistemas pasivos

En el 2002, Aníbal Figueroa y Gloria Castorena tratan sobre la remodelación y adecuación bioclimática de una vivienda construida en diferentes épocas. Se agregó un invernadero que es el eje del sistema de calentamiento pasivo [19].

En el 2003, estos mismos autores presentan un antigüo colegio Jesuita, donde aparece un espacio cuyo emplazamiento y orientación respondían a obtener la máxima ganancia del recorrido solar. Dicha investigación documenta las estrategias de diseño de este espacio para el calentamiento pasivo [20].

En el 2005, Claudia Vázquez y Diego Morales evalúan las condiciones de confort térmico al interior de una vivienda de interés social ubicada en León, Guanajuato. Concluyen que no es adecuada térmicamente y proponen sistemas pasivos para calentar como invernadero de ventana y trampa de calor [21].

En el 2008, Lizbeth Montejano y José Morales integran un sistema de calentamiento solar por aire a una casa ya construida. El aire calentado es conducido y almacenado en una cama de piedras por debajo de las habitaciones [22].

Esperanza García, Diego Morales y Hermilio Salas comprueban el funcionamiento del aire como aislante térmico. Inspirados en la arquitectura nómada americana, conocida como "tipi", se construye una cabaña con una "segunda piel", en la que se utiliza una lona para dejar aire entre ésta y el techo, con el propósito de mantener caliente la cabaña. Se alcanza un amortiguamiento térmico de 3.6°C en promedio. Este sistema puede ser utilizado también para enfriamiento [23].

En el 2010, Oscar Rodea y Manuel Gordon realizan un estudio térmico de un espacio en el cual se implementó un sistema de piso radiante hidrónico solar. El piso radiante se alimenta por medio de un colector solar de tubos evacuados [24].

9.2.2. Sistemas de bajo consumo de energía

En el 2003, Aníbal Figueroa y Gloria Castorena presentan un modelo de vivienda bioclimática construida a base de madera. Esta casa cuenta con un sistema de captación de agua pluvial y de deshecho, un sistema híbrido de calentamiento de agua con colector solar plano de cobre y un sistema de bajo consumo de energía de calentamiento que funciona a través de una cámara de aire en el techo auxiliado con ventilación mecánica [25].

En el 2006, Agustín Torres y David Morillón presentan un sistema híbrido (bomba de calor) para calentamiento, el cual utiliza el subsuelo por su aporte de

calor [26].

En el 2009, Aníbal Figueroa y Gloria Castorena presentan un sistema de calentamiento de agua y aire. Se trata de una doble cubierta en el techo que actúa como colector de aire y agua. Entre esta cubierta y la losa se genera una cámara que sirve como ducto de aire y aloja un intercambiador de calor agua-aire. El calor generado en este espacio se inyecta por medio de ventilación forzada o se disipa según sea conveniente, y el agua puede ser utilizada para fines domésticos [27].

9.3. Sistemas duales

En el 2000, M. Costa, C. Pérez, A. Oliva, O. Aceves, F. Sen, W. Platzer, A. Haller, M. Indetzki y T. Ojanen estudian las fachadas de vidrio ventiladas en el interior añadiéndoles la tecnología de aislamiento transparente, materiales de cambio de fase, y celdas fotovoltaicas. Este sistema puede funcionar para calentar si se inyecta el aire calentado o para enfriar si éste se disipa [28].

En el 2008, Esperanza García, Diego Morales y Hermilio Salas comprueban el funcionamiento del aire como aislante térmico. Inspirados en la arquitectura nómada americana, conocida como "tipi", se construye una cabaña con una "segunda piel", en la que se utiliza una lona para dejar aire entre ésta y el techo, con el propósito de mantener caliente la cabaña. Se alcanza un amortiguamiento térmico de 3.6°C en promedio. Este sistema puede ser utilizado también para enfriamiento [23].

En el 2009, Aníbal Figueroa y Gloria Castorena presentan un sistema de calentamiento de agua y aire. Se trata de una doble cubierta en el techo que actúa como colector de aire y agua. Entre esta cubierta y la losa se genera una cámara que sirve como ducto de aire y aloja un intercambiador de calor agua-aire. El calor generado en este espacio se inyecta por medio de ventilación forzada o se disipa según sea conveniente, y el agua puede ser utilizada para fines domésticos [27].

9.4. Deshumidificación

En el 2002, Jesús Chávez y David Morillón presentan una propuesta de sistema pasivo de ventilación-deshumidificación el cual permite aprovechar la frecuencia y velocidad de los vientos de la región, ventilando el interior de la habitación pero deshumidificando antes el aire [29].

En el 2005, Hermenegildo Bonifacio, Alberto Cruz, Victor Hernández y David Morillón presentan una propuesta de climatización pasiva para enfriamiento y deshumidificación (con entrada de aire sumergida y deshumificación con base en el principio de muro Trombe) [6].

En el 2009, Aída López y José Morales diseñan un sistema pasivo de aireación que funciona al interior de los muros de block hueco, con el objeto de disminuir la humedad para bien de los edificios y de los usuarios. La estrategia se basa en los principios del efecto chimenea y Venturi, y se utiliza la carga térmica de la envolvente para lograr que el aire circule por el interior de los muros. Se lleva a cabo un procedimiento experimental para comprobar su eficiencia [30].

Referencias

- [1] Victor Hernández and David Morillón [II-UNAM]Dirección General de Zoológicos de la Ciudad de México. Uso del muro captor y almacenador de calor como sistema pasivo de enfriamiento. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 73–78, 2001.
- [2] María Corral and Ramona Romero [UABC]. Impacto de la adecuación pasiva de la vivienda popular de regiones desérticas de clima cálido extremo en el confort y uso de sistemas de enfriamiento mecánico. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 79–84, 2001.
- [3] Carlos Carrazco [CIE-UNAM] and David Morillón [II-UNAM]. Patio central como sistema pasivo de enfriamiento en clima cálido seco: edificios comerciales. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 111–116, 2003.
- [4] Victor Hernández [FES Cuautitlán-UNAM] and David Morillón [II-UNAM]. Estudio térmico del comportamiento de un muro como sistema de descarga de calor. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 123–128, 2003.
- [5] Victor Hernández, Hermenegildo Bonifacio, Pedro Guzmán [FES Cuautitlán-UNAM], and David Morillón [II-UNAM]. Estudio del sistema de descarga de calor en muros en diversas condiciones climáticas. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 55–58, 2004.

- [6] Hermenegildo Bonifacio, Alberto Cruz, Victor Hernández [FES Cuautitlán-UNAM], and David Morillón [II-UNAM]. Enfriamiento y deshumidificación pasiva de una casa habitación para la localidad de Bahía de Banderas, Jalisco. Memoria de la XXIX Semana Nacional de Energía Solar, pages 85–86, 2005.
- [7] Pablo Elías, Leandro Sandoval, and Adalberto Tejeda [UCOL]. Potencial de uso del enfriamiento evaporativo en clima cálido sub húmedo: El caso Colima. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 11–14, 2006.
- [8] J. Pilatowsky [CIE-UNAM] Oskam, D. Morillón [II-UNAM], and G. Ramos [CONAE]. Desarrollo de un módulo habitacional de interés social en regiones cálidas-secas, con diseño bioclimático y con la integración de equipamiento eficiente y un sistema centralizado de climatización operado con energía solar. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 37–40, 2006.
- [9] Alejandro Mesa [CRICYT], Victor Hernández, Diego Morales, and David Morillón [UNAM]. Evaluación del potencial de sistemas de descarga de calor en viviendas de uno y cinco niveles en entornos urbanos de las ciudades de México, Guadalajara, Colima y Mexicali. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 59–65, 2006.
- [10] Jorge Rosas and David Morillón [II-UNAM]. Consumo y potencial de ahorro de energía eléctrica de los sistemas de climatización (aire acondicionado y cooler) en el sector residencial: región noroeste de México. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 93–97, 2006.
- [11] Victor Hernández, José Fernández, and David Morillón [II-UNAM]. Relación entre la superficie de un sistema de descarga de calor en muros con respecto a la carga térmica del cuarto a climatizar. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–04, 2007.
- [12] Daniel Solís [II-UNAM]. Análisis exergético de un espacio con techo escudo. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-24, 2007.
- [13] Jorge Rojas, Guadalupe Huelsz, Ramón Tovar [CIE-UNAM], Pablo Elías [CIE-UNAM / UAT], and Guadalupe Alpuche [UNISON]. Confort térmico

- mediante ventilación nocturna en un auditorio bioclimático en clima cálido sub-húmedo. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-52, 2009.
- [14] Pablo Elías, Jorge Rojas [CIE-UNAM], Adán Espuma, and Rubén Roux [UAT]. Potencial climático para el uso del enfriamiento evaporativo en Temixco, Morelos. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-54, 2009.
- [15] Aníbal Luna, Gonzalo Bojórquez, and Ricardo Gallegos [UABC]. Factibilidad de uso de un sistema híbrido de climatización artificial en Mexicali, Baja California. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 1–3, 2003.
- [16] Andrés Andrade and David Morillón [II-UNAM]. Diseño y construcción de un sistema híbrido para enfriamiento pasivo. Memoria de la XXIX Semana Nacional de Energía Solar, pages 99–102, 2005.
- [17] Ramón Tovar [CIE-UNAM] and Antonio Castillo [CIE-UNAM / IPN]. Enfriamiento pasivo por techos fríos en habitaciones. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-47, 2009.
- [18] Martín Rivero [FES Cuautitlán-UNAM], Isaac Pilatowsky, Octavio García, Jorge Rojas, Ramón Tovar, and José Muñoz [CIE-UNAM]. Evaluación experimental de un sistema de enfriamiento radiativo nocturno en una zona con clima cálido sub-húmedo. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ERE–10, 2010.
- [19] Aníbal Figueroa and Gloria Castorena [UAM]. Vivienda bioclimática en las antiguas casas de recaudación del colegio de Tepotzotlán, Estado de México. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 141–145, 2002.
- [20] Gloria Castorena and Aníbal Figueroa [UAM]. Estudio del comportamiento bioclimático del solario en el antiguo colegio Jesuita ubicado en Tepotzotlán, Estado de México. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 75–78, 2003.
- [21] Claudia Vázquez and Diego Morales [FA-UNAM]. Evaluación del desempeño térmico para una vivienda de interés social en León Guanajuato. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 55–58, 2005.

- [22] Lizbeth Montejano and José Morales [FA-UNAM]. Integración arquitectónica de la calefacción solar por aire. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–32, 2008.
- [23] Esperanza García [UAM], Diego Morales, and Hermilo Salas [FA-UNAM]. Implementación de doble techumbre para control térmico en clima semi-frío húmedo; caso de estudio Huixquilucan, Estado de México. *Memoria de la XXXII Semana Nacional de Energía Solar*, 2008.
- [24] Oscar Rodea and Manuel Gordon [UAM]. Calefacción hidrónica solar para una casa móvil. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–45, 2010.
- [25] Aníbal Figueroa and Gloria Castorena [UAM]. Vivienda bioclimática en madera Chilua, Estado de México. Memoria de la XXVII Semana Nacional de Energía Solar, pages 69–73, 2003.
- [26] Agustín Torres and David Morillón [II-UNAM]. Sistema híbrido para calentar espacios: cuya fuente de calor es el subsuelo. Memoria de la XXX Semana Nacional de Energía Solar, pages 165–170, 2006.
- [27] Aníbal Figueroa and Gloria Castorena [UAM]. Evaluación inicial de un sistema de climatización integrado a la construcción para la Ciudad de México. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–44, 2009.
- [28] M. Costa, C. Pérez, A. Oliva [U. P. de Cataluña], O. Aceves, F. Sen, W. Platzer, A. Haller, M. Indetzki, and T. Ojanen [Centre Tecnològic de Transferència de Calor]. Analysis of multi-functional ventilated facades. An european joule project. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 81–88, 2000.
- [29] Jesús Chávez and David Morillón [II-UNAM]. Sistema pasivo de ventilación-deshumidificación. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 31–34, 2002.
- [30] Aída López and José Morales [FA-UNAM]. Desarrollo de un aireador pasivo para disminuir humedad intramuros. Estudio de los indicadores. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–35, 2009.

10. Iluminación

Para fines de arquitectura bioclimática, la iluminación comprende los dispositivos y estrategias arquitectónicas que aprovechan la luz natural del sol.

Del 2000 a 2010 se han presentado 32 artículos en este tema en los congresos de la ANES. El grupo con más publicaciones es la Universidad Autónoma Metropolitana, con Roberto García (8 publicaciones); seguido por la Universidad de Sonora, con Guadalupe Alpuche, Irene Marincic y Manuel Ochoa (5); el Instituto de Ingeniería de la UNAM, con David Morillón (4); y en menor medida, otros investigadores de la UAM como Alejandro Díaz, Victor Rodríguez y Rocío Moyo (2); la Facultad de Arquitectura de la UNAM, con Arturo Valeriano (2); y Agustín Torres del II-UNAM (2).

En el 2000, Levente Filetóth simula el comportamiento de los sistemas de iluminación a través de un modelo con un cielo artificial [1].

En el 2002, Roberto García y Eleuterio González presentan propuestas de diseño como alternativas de solución a problemas de confort lumínico y térmico en un edificio comercial de oficinas [2].

Francisco Heras, Irene Torres, Juan Ambriz y Hernando Romero realizan un análisis de ahorro de energía y de los efectos en la iluminación al cambiar las lámparas T-12 DE 39W con balastro ferromagnético por lámparas eficientes T-8 de 32W con balastro electrónico en los principales edificios de la UAM [3].

Roberto García plantea estrategias arquitectónicas para el aprovechamiento del potencial lumínico de la luz natural: componente reflectivo horizontal o inclinado, conducto solar y persianas especulares. Menciona que la luz natural tiene ventajas como la vitamina D, necesaria para la salud de las personas o la acción germinicida en su componente ultravioleta [4].

Gustavo San Juan, Santiago Hoses, Mariana Melchori y Graciela Vargas evalúan la incidencia de distintas estrategias de protección solar en la iluminación natural interior de aulas de educación básica. Se trabajó con modelos analógicos a escala, utilizando técnicas de medición de iluminación natural y helidón para la verificación de protecciones solares [5].

En el 2005, David Ávila realiza un análisis en modelos a escala en ambientes simulados de diferentes casos de aberturas en muros y techos, sus protecciones solares, los materiales de vidriado, así como las proporciones que éstos guardan con el conjunto de las edificaciones. Expone que aprovechando la luz natural es posible reducir la utilización de luz artificial, e incluso prescindir de ella [6].

Silvia Arias realiza un análisis por medio de modelos físicos (maquetas) en

ambientes simulados. Muestra las variables que intervienen en la distribución del flujo luminoso: disposición del vano y elementos arquitectónicos como materiales, texturas, colores y proporciones. Presenta gráficas del factor de reflexión para distintos materiales y colores [7].

Erick Morales evalúa la eficiencia de un reflector horizontal colocado en la ventana, el cual refleja la luz natural hacia el techo y permite iluminar mejor el área alejada a la ventana [8].

Jorge Rosasa y David Morillón emiten recomendaciones para el diseño de los elementos de control solar, como aleros y partesoles, con el fin de lograr mejor iluminación y confort. Se analiza la reducción en el consumo eléctrico debido a la incorporación de estos elementos [9].

En el 2006, Leandro Ferrón, Andrea Pattini y Miguel Lara analizan las condiciones de iluminación natural en el interior de un edificio comercial con muros vidriados protegidos por un film adhesivo. Los resultados sugieren que la utilización de películas de protección solar no es una estrategia adecuada para promover el uso de la luz natural [10].

Rosalinda González, Lesvia Pérez, Carlos Quirós, Eduardo González, Gaudy Bravo, Magalis Gallardo, Axa Rojas y Elizabeth Tosí caracterizan el comportamiento lumínico de la Vivienda Bioclimática Prototipo (VBP-1) durante el transito solar del primer semestre del año. Se encontró una gran diferencia al cerrar o abrir el sistema de iluminación cenital (abertura rectangular de 9mts en techo) [11].

En el 2007, Areli López, Eduardo Vázquez, Ricardo Gallegos y Roberto Calderón simulan por medio de Ecotec V.5 los niveles de iluminación que proporcionan los cubos de luz en la Comarca Lagunera. Se plantea la relación entre su efectividad y su orientación, dimensión y porcentaje de abertura sobre los muros que lo limitan [12].

Guadalupe Alpuche, Irene Marincic y Manuel Ochoa realizan la simulación de iluminación natural mediante el programa Ecotec, para instalaciones de la Universidad de Sonora. Se analizan los efectos de esta variable en función de los requerimientos, a fin de proponer modificaciones que mejoren el diseño lumínico existente [13].

Agustín Torres y David Morillón muestran el ahorro de energía eléctrica en cuartos limpios utilizados para elaborar productos farmacéuticos, aprovechando la iluminación natural a través de un domo de policarbonato en vez de utilizar lámparas fluorescentes. Asímismo, se hace notar el ahorro energético al utilizar menos el aire acondicionado debido a la ausencia del calor que generarían las lámparas [14].

Aníbal Figueroa, Alicia Chacalo, Gloria Castorena y Carlos Núñez tratan de mejorar las condiciones de iluminación natural para la rectoría de la UAM Azcapotzalco. Se realiza la evaluación de cuatro alternativas (modelos físicos) bajo condiciones controladas de laboratorio y una prueba a cielo abierto despejado. La mejora en luxes fue de un 43.9 % en promedio [15].

En el 2008, Guadalupe Alpuche, Irene Marincic, Manuel Ochoa y Luis López presentan los resultados obtenidos de las simulaciones que comparan las condiciones actuales de las aulas de la Universidad de Sonora contra diversas propuestas de mejora. Proporciona una lista de los distintos programas computacionales para el análisis lumínico [16].

Victor Rodríguez, Roberto García y Alejandro Díaz evalúan el aprovechamiento de la luz natural en un edificio de oficinas. Identifican las zonas que no están dentro del rango de confort lumínico según los requerimientos y normatividad existentes. Finalmente, determinan las estrategias generales para aprovechar mejor este recurso [17].

Alejandro Díaz, Roberto García y Victor Rodríguez establecen criterios de diseño de un dispositivo que permite el uso efectivo de la iluminación natural a través de patios centrales o cubos para crear espacios confortables en las edificaciones con problemas lumínicos [18].

Roberto García y Rocío Moyo presentan un caso de estudio de un edificio de género deportivo que se caracteriza por una excesiva dependencia de alumbrado eléctrico. Plantean estrategias para el aprovechamiento de la luz natural como ductos lumínicos para la captación cenital directa. Se construye un modelo físico tridimensional para evaluar las estrategias propuestas [19].

En el 2009, Arturo Valeriano presenta la comparación entre los valores de Factor de Luz Día y los obtenidos a partir de los registros de iluminancia en el interior de un modelo a escala. Los resultados muestran que existe discrepancia de los niveles de iluminacia entre un método y otro [20].

Guadalupe Alpuche, Irene Marincic y Manuel Ochoa analizan las luminancias dentro de un laboratorio de la Universidad de Sonora por medio de un luxómetro y una cámara digital, durante una semana, utilizando sólo la iluminación natural y se observa si existen grandes diferencias de contraste que representen deslumbramiento a los usuarios. Se demuestra que la iluminación natural debe ser diseñada acorde a las necesidades lumínicas que se requieran dentro de las edificaciones [21].

Isidra Arjona, Carmen García, María Pérez y Arturo Campos analizan el confort lumínico en ambientes laborales y educativos. Se aborda desde una perspectiva mixta que involucra a las personas y su percepción (por medio de encuestas)

y los aspectos técnicos de la iluminación artificial. Los resultados aportan información para crear nuevos espacios que sean acordes a las necesidades físicas y emocionales del usuario [22].

Roberto García y Rocío Moyo presentan una alternativa a los sistemas convencionales de iluminación para un edificio deportivo. Se implementan ductos lumínicos (tubos incrustados en el plafón con un material reflejante en el interior) y se verificó su eficiencia utilizando un modelo físico tridimensional en condiciones de cielo despejado y difuso [23].

Gloria Castorena y Aníbal Figueroa analizan el potencial del ahorro energético que aportan los elementos arquitectónicos históricos iluminados naturalmente. Ofrece diferentes alternativas de iluminación natural que pueden ser utilizadas para los edificios contemporáneos [24].

Agustín Torres y David Morillón realizan un análisis de los beneficios energéticos y térmicos que se tendrían si se instalara adicionalmente un ducto de iluminación natural en un cuarto limpio (laboratorio farmacéutico). La propuesta es un lumiducto de lámina de acero de alta reflectividad de 25.4 cm de diámetro con domo de policarbonato y un difusor de acrílico con figuras curvas [25].

Gloria Castorena, Aníbal Figueroa, Victor Fuentes, Roberto García, Victor Palacio y Salvador Islas presentan el Laboratorio de Iluminación Artificial, ubicado en la UAM, enfocado a la práctica, investigación y adquisición de conocimientos en el área de iluminación y al ahorro de energía en los edificios. Este espacio simula a escala real las cualidades y potencialidades de las lámparas y luminarias, así como las sensaciones y niveles de confort lumínico [26].

Alejandro Díaz y Roberto García prueban la eficiencia de un dispositivo reflejante instalado en el cubo de un edificio habitacional. Se trata de un dispositivo de forma rectangular, curva, de 91 por 61 cm, en acero inoxidable con acabado espejo. Los resultados muestran un incremento de hasta 40 % en la eficiencia lumínica [27].

En el 2010, Arturo Valeriano presenta los resultados de la evaluación realizada en un salón del edificio de Posgrado de Arquitectura de la UNAM. Para esto, se utilizaron 11 fotómetros a lo largo de una semana. Los resultados indican que el nivel de iluminación natural está por debajo de lo recomendado y que las protecciones solares en este caso son contraproducentes ya que la reducen en un 90 % [28].

Manuel Ochoa, Irene Marincic, Guadalupe Alpuche y Aida Anaya realizan un diagnóstico de las condiciones lumínicas actuales del edificio de arquitectura de la Unison, según las metodologías, estándares y normas nacionales e internacionales. Posteriormente se presentan los resultados y propuestas para solucionar

los problemas encontrados [29].

Guadalupe Alpuche, Irene Marincic, Manuel Ochoa y Luis Vargas realizan un estudio de la distribución de la luz natural dentro del campo de visión de una persona, utilizando una cámara digital calibrada para mediciones de luminancias y el programa Radiance para simular las condiciones lumínicas de dos sistemas de iluminación natural en el edificio de arquitectura de la Universidad de Sonora [30].

Ulises Preciado y David Morillón desarrollan una metodología para la estimación de los niveles de iluminancia exteriores globales, directos y difusos, con diferentes condiciones de cielo para cualquier región y en base a los isorrequerimientos de climatización (diagramas de Olgyay). Se aplica esta metodología para el caso del estado de Hidalgo [31].

Roberto García y Alejandro Díaz prueban un dispositivo (de forma rectangular, curva, de 91 por 61 cm, en acero inoxidable con acabado espejo) para incrementar la iluminación en un cubo de un edificio habitacional. Los resultados muestran hasta un 30 % de incremento en la eficencia lumínica [32].

Referencias

- [1] Levente Filetóth [Budapest University of Technology and Economics]. Daylighting analysis of rooflights through model measurements in the artificial sky. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 155–161, 2000.
- [2] Roberto García and Eleuterio González [UAM]. Aplicación de estrategias de diseño para obtener confort lumínico y térmico en edificios comerciales de oficinas. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 87–91, 2002.
- [3] Francisco Heras, Irene Torres, Juan Ambriz, and Hernando Romero [UAM]. Proyecto de eficiencia energética en iluminación de la Universidad Autónoma Metropolitana Iztapalapa. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 201–206, 2002.
- [4] Roberto García [UAM]. Estrategias para el aprovechamiento de la luz natural e integración con iluminación eléctrica en edificaciones en climas cálidos para ahorro de energía y confort lumínico. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 207–212, 2002.

- [5] Gustavo San Juan, Santiago Hoses, Mariana Melchiori, and Graciela Viegas [U.N. de la Plata]. Estrategias de control solar y su incidencia en la iluminación natural de aulas escolares. Metodología, herramientas de evaluación y análisis. Memoria de la XXVI Semana Nacional de Energía Solar, pages 737–742, 2002.
- [6] David Ávila [UDG]. Condiciones de iluminación natural en espacios arquitectónicos. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 21–26, 2005.
- [7] Silvia Arias [UDG]. La influencia de la envolvente y los acabados en la distribución de la cantidad y calidad de la iluminación natural. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 27–31, 2005.
- [8] Erick Morales [FA-UNAM]. Análisis y evaluación experimental de la iluminación natural: reflector horizontal utilizado en tres tipos de cristal. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 59–65, 2005.
- [9] Jorge Rosas and David Morillón [II-UNAM]. Análisis de los elementos de control solar en la arquitectura para clima cálido seco y su impacto en el consumo de energía eléctrica: caso de estudio Hermosillo, Sonora. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 103–106, 2005.
- [10] Leandro Ferrón, Andrea Pattini [CRICYT], and Miguel Lara [Instituto de Física de Rosario]. Estudio de las condiciones de iluminación natural generadas por el uso de películas de control solar en oficinas en climas soleados. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 7–10, 2006.
- [11] Rosalinda González, Lesvia Pérez, Carlos Quirós, Eduardo González, Gaudy Bravo, Magalis Gallardo, Axa Rojas, and Elizabeth Tosí [U. de Zulia]. Comportamiento lumínico natural de la VBP-1 en el tránsito solar cenital del 1er semestre (18 abril). *Memoria de la XXX Semana Nacional de Energía Solar*, pages 235–240, 2006.
- [12] Areli López [UADEC], Eduardo Vázquez, Ricardo Gallegos [UABC], and Roberto Calderón [Iluarco Consultores]. Niveles de iluminancia en los cubos de luz de la Comarca Lagunera. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-01, 2007.

- [13] Guadalupe Alpuche, Irene Marincic, and Manuel Ochoa [UNISON]. Evaluación del ahorro de energía utilizando iluminación natural en espacios educativos. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–08, 2007.
- [14] Agustín Torres and David Morillón [II-UNAM]. Beneficios económicos y energéticos en cuartos limpios, caso de estudio: iluminación natural y capacidad aislante de la envolvente. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–22, 2007.
- [15] Aníbal Figueroa, Alicia Chacalo, Gloria Castorena, and CarlosÑúñez [UAM]. Iluminación natural para oficinas, el caso de la rectoría de la UAM Azcapotzalco. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–44, 2007.
- [16] Guadalupe Alpuche, Irene Marincic, Manuel Ochoa [UNISON], and Luis López [UJAT]. Análisis lumínico de las aulas del programa de arquitectura-Unison. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–16, 2008.
- [17] Victor Rodríguez, Roberto García, and Alejandro Díaz [UAM]. Análisis de la iluminación de un edificio comercial de la Ciudad de México para establecer estrategias generales de diseño para el aprovechamiento de luz natural. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-43, 2008.
- [18] Alejandro Díaz, Roberto García, and Victor Rodríguez [UAM]. Diseño de un dispositivo de iluminación de alta eficiencia instalado en un cubo de iluminación de un edificio comercial. *Memoria de la XXXII Semana Nacional de Energía Solar*, 2008.
- [19] Roberto García and Rocio Moyo [UAM]. Sistemas lumínicos de alta eficiencia energética para el aprovechamiento de luz natural en edificaciones deportivas. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-52, 2008.
- [20] Arturo Valeriano [FA-UNAM]. Estudio comparativo de los valores del factor de luz día a partir de mediciones hechas en un modelo a escala y su cálculo mediante el método del BRE. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–11, 2009.

- [21] Guadalpue Alpuche, Irene Marincic, and Manuel Ochoa [UNISON]. Análisis de las luminancias en espacios educativos. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-12, 2009.
- [22] Isidra Arjona, Carmen García, María Pérez, and Arturo Campos [UADY]. Evaluación del confort lumínico en ambientes laborales. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-41, 2009.
- [23] Roberto García and Rocío Moyo [UAM]. Análisis y evaluación del comportamiento de ductos lumínicos para el aprovechamiento de la luz natural en un edificio deportivo. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–42, 2009.
- [24] Gloria Castorena and Aníbal Figueroa [UAM]. Análisis de los sistemas de iluminación natural en la arquitectura conventual. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-46, 2009.
- [25] Agustín Torres and David Morillón [II-UNAM]. Beneficios energéticos y térmicos por el uso de iluminación natural para cuarto limpio clase E y F. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–55, 2009.
- [26] Gloria Castorena, Aníbal Figueroa, Victor Fuentes, Roberto García, Victor Palacio, and Salvador Islas [UAM]. Laboratorio de iluminación artificial. Equipamiento para la docencia y la investigación en iluminación artificial. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–57, 2009.
- [27] Alejandro Díaz and Roberto García [UAM]. Dispositivo de iluminación de alta eficiencia instalado en cubos de edificios. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–60, 2009.
- [28] Arturo Valeriano [FA-UNAM]. Evaluación y análisis de la iluminación natural. Caso de estudio: salón de clases del edificio de posgrado de Arquitectura, Ciudad Universitaria, México D.F. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–10, 2010.
- [29] Manuel Ochoa, Irene Marincic, Guadalupe Alpuche, and Aida Anaya [UNI-SON]. Propuestas para el mejoramiento de la eficiencia lumínica en espacios educativos para la enseñanza de la arquitectura. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-50, 2010.

- [30] Guadalupe Alpuche, Irene Marincic, Manuel Ochoa, and Luis Vargas [UNI-SON]. Evaluación del deslumbramiento en espacios con sistemas de iluminación natural. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–52, 2010.
- [31] Ulises Preciado and David Morillón [II-UNAM]. Metodologías para la evaluación del potencial de la iluminación natural y su aprovechamiento en los edificios: caso de estudio, Pachuca, Hidalgo. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–53, 2010.
- [32] Roberto García and Alejandro Díaz [UAM]. Potencial de un sistema de iluminación innovador de alta eficiencia para el aprovechamiento de la luz natural en edificaciones. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–80, 2010.

11. Adecuaciones bioclimáticas a edificaciones existentes

Las adecuaciones bioclimáticas son reformas o correcciones que se realizan a las edificaciones con el fin de volverlas más eficientes bioclimáticamente, es decir, disminuir su consumo de energía y/o aumentar su confort higrotérmico.

Esta sección se divide en dos subsecciones: propuestas y aplicaciones. El apartado de propuestas incluye los trabajos que solamente sugieren adecuaciones de carácter bioclimático para solucionar cierto problema, mientras que en la parte de aplicaciones se incluyen los trabajos en los que se llevan a cabo las adecuaciones en un edificio en específico.

Se han presentado 26 trabajos relativos a este tema en los congresos de la ANES, del 2000 al 2010. Dentro de estas publicaciones, 16 son propuestas y 10 aplicaciones.

Los grupos de investigación que publicaron más trabajos en este tema son la Universidad Autónoma Metropolitana, con Aníbal Figueroa (5 publicaciones), Roberto García (4) y Gloria Castorena (3); la Facultad de Arquitectura de la UNAM, con Diego Morales (3); la Universidad Autónoma de Baja California, con María Corral (2); Solarco Ltda, con Simon Bright (2); y la Universidad Michoacana de San Nicolás de Hidalgo, con Ana Velasco (2).

11.1. Propuestas

En el 2000, María Pérez y Francisco Pacheco presentan un estudio de caso en donde se realiza un diagnóstico a edificios de la Facultad de Ingeniería de la Universidad Autónoma de Yucatán con el fin de elaborar propuestas que coadyuven al ahorro energético [1].

En el 2001, Ruth Lacomba y Moisés Nahmad hacen una propuesta para la adaptación bioclimática a un clima frío, en Valle de Bravo, de una casa mal orientada con muy bajo potencial bioclimático [2].

En el 2002, Irene Marincic, Lizbeth Blanco y Manuel Ochoa analizan las respuestas térmicas en el interior de unos edificios de la Universidad de Sonora, a fin de deducir cómo optimizar el diseño de la envolvente, proponiendo posibles soluciones [3].

Roberto García y Eleuterio González presentan propuestas de diseño bioclimático como alternativas de solución a problemas de confort lumínico y térmico en un edificio comercial de oficinas [4]. Miguel Arzate y Diego Morales proponen una metodología para el diseño bioclimático integral. Analizan el confort térmico de una casa de interés social en Querétaro y proponen estrategias de diseño [5].

Teresita Verdugo y María Corral realizan un diagnóstico de las condiciones de confort térmico de una vivienda popular en Mexicali y se hacen propuestas para adecuarla bioclimáticamente. Al simular las propuestas por medio de Doe 2.1e se encontró que la que más reduce el costo de la energía consumida es la de colores claros en muros y techos, seguida por la de control de la infiltración y por último la de cambio de orientación [6].

Ana Velasco y Pedro Lina analizan las condiciones actuales de una escuela primaria, valorando los sistemas de diseño bioclimático. Elaboran propuestas que respondan a los requerimientos de confort [7].

En el 2003, Ariadna Zetina y Diego Morales plantean las adecuaciones necesarias para adaptar la vivienda de interés social al clima del estado de Campeche [8].

En el 2004, Aníbal Figueroa y Manuel Fernández presentan los resultados de investigación efectuados en un análisis bioclimático de las aulas en climas cálidos y propone alternativas económicamente viables para disminuir el problema de sobrecalentamiento (aislante en la losa y cambio de orientación con respecto al viento) [9].

Roberto García presenta un caso de estudio de una edificación de oficinas. Se propone la evaluación y aplicación de estrategias bioclimáticas encaminadas al uso eficiente de energía y el confort higrotérmico y lumínico [10].

En el 2005, Ramona Romero, Gonzalo Bojórquez, Ricardo Gallegos, Eduardo Vázquez, María Corral y Aníbal Luna presentan un proyecto desarrollado en cinco etapas: encuestas, simulación térmica, monitoreo, elaboración de propuestas de diseño arquitectónico y elaboración de lineamientos y recomendaciones para la vivienda económica de regiones de clima cálido [11].

En el 2007, Claudia Nuriulú y Diego Morales analizan la influencia de las cubiertas planas en la temperatura interior de las viviendas de interés social. Se analiza una vivienda de interés social en Chiapas y se encuentra que su temperatura interior llega a ser mayor que la temperatura ambiente, por lo que se propone utilizar techos de acuerdo a las condiciones del contexto para mejorar el confort del usuario [12].

Iván Oropeza brinda soluciones para la adecuación bioclimática de viviendas en base a las variaciones climáticas que existen en el lugar de estudio (Tehuacán, Puebla). Con base en la helioarquitectura, la principal estrategia es colocar un alero de 1m que permita la entrada del sol en invierno y la bloquee en verano [13].

En el 2009, Roberto García y Gerardo Feijóo presentan el comportamiento

térmico de una cubierta naturada (cubierta verde) en un caso de estudio de un museo. Los resultados indican que las temperaturas son más confortables para los ocupantes con la aplicación de este sistema sustentable [14].

En el 2010, Elide Staines y Javier Terrazas presentan al muro verde como un elemento integral en las edificaciones para resolver el doble reto del ahorro energético y el mejoramiento de la imagen urbana. Se propone un muro verde para un edificio antigüo en Ciudad Juárez [15].

Gustavo Sousa plantea los beneficios obtenidos al simular las propuestas de rehabilitación de una vivienda existente en Sonora, para mejorar las condiciones de habitabilidad, satisfaciendo necesidades de enfriamiento y captación térmica [16].

11.2. Aplicaciones

En el 2000, Simon Bright aplica un sistema de ventilación por convección natural, a un teatro con problemas de confort, por medio de entradas con trampas acústicas que evitan el ingreso del ruido proveniente del exterior [17].

Simon Bright y Peter Bright adaptan un edificio de departamentos para utilizarlo como sede para la corporación Ecofondo. Se incorporan tecnologías de ahorro de energía, iluminación natural, bajo consumo de agua, etc. [18].

En el 2001, Gloria Castorena y Aníbal Figueroa presentan la remodelación y amplicación de una vivienda para adecuarla bioclimáticamente a las condiciones de un bioclima semi-frío [19].

Aníbal Figueroa expone las consideraciones de diseño bioclimático y sistemas de iluminación natural y artificial para la reestructurazión y ampliación de un edificio existente en la Unidad Azcapotzalco de la Universidad Autónoma Metropolitana [20].

En el 2002, Aníbal Figueroa y Gloria Castorena muestran la remodelación y adecuación bioclimática de una vivienda construida en diferentes épocas. Se agregó un invernadero que es el eje del sistema de calentamiento pasivo [21].

En el 2003, Ana Velasco y Pedro Lina valoran las cualidades de las adaptaciones que hacen los habitantes de las viviendas (incorporación de zonas verdes y techumbre para los patios de servicio, así como cortinas, aleros, portales y ventilaciones adicionales), interpretando los resultados desde una perspectiva metódica con relación a las mejoras experimentadas como confort térmico interno [22].

Aníbal Figueroa y Gloria Castorena realizan un análisis sobre una sala audiovisual y aportan propuestas bioclimáticas que buscan mejorar las condiciones de funcionamiento y de confort. La propuesta más importante es un sistema de renovación de aire natural-mecánico [23].

En el 2004, Roberto García y Eleuterio González analizan y evalúan experimentalmente el potencial de las estrategias bioclimáticas para obtención de confort térmico y lumínico en un edificio de oficinas [24].

En el 2009, Aída Ceballos y Noemí Bravo estudian el comportamiento térmico de una construcción del Centro Histórico de la Ciudad de México. Posteriormente se modificaron las condiciones al sombrear la azotea. Se realizaron comparaciones entre las condiciones originales y las modificadas, mostrando un reducción de 3.2°C. Proponen transformar el sistema constructivo de la azotea o implementar una techo verde [25].

Santiago Díaz, Raúl Ruiz y Gabriel Castañeda exponen las estrategias de adaptación bioclimática de una casa ubicada en Chiapas, a partir de la evaluación del comportamiento térmico. Las estrategias fueron: aislamiento de la losa, muros oriente, poniente y sur, así como el bloqueo solar de las ventanas poniente, oriente y norte [26].

Referencias

- [1] María Pérez [UADY] and Francisco Pacheco [CFE]. Ahorro de energía y eficiencia en edificios. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 41–45, 2000.
- [2] Ruth Lacomba and MoisésÑahmad [UV]. Reconversión solar de casa en Valle de Bravo, remodelación arquitectónica de Alberto Rimoch. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 39–42, 2001.
- [3] Irene Manrincic, Lizbeth Blanco, and Manuel Ochoa [UNISON]. Propuesta de mejoras bioclimáticas para edificios tipo C.A.P.F.C.E. en el clima cálido seco. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 41–46, 2002.
- [4] Roberto García and Eleuterio González [UAM]. Aplicación de estrategias de diseño para obtener confort lumínico y térmico en edificios comerciales de oficinas. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 87–91, 2002.
- [5] Miguel Arzate and Diego Morales [FA-UNAM]. El diseño bioclimático en la vivienda. Caso aplicado a la ciudad de Querétaro. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 147–150, 2002.

- [6] Teresita Verdugo and Maria Corral [UABC]. Efectos de la aplicación de técnicas de adecuación ambiental de bajo costo en el consumo de la energía consumida y el confort térmico de una vivienda popular. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 175–179, 2002.
- [7] Ana Velasco [UMICH] and Pedro Lina [IPN]. Propuesta para la integración de elementos de diseño arquitectónico que mejoren las condiciones climáticas en la escuela primaria Mariano Matamoros. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 695–701, 2002.
- [8] Ariadna Zetina and Diego Morales [FA-UNAM]. Diagnóstico y propuesta para el acondicionamiento térmico de la vivienda de interés social de Campeche. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 135–138, 2003.
- [9] Aníbal Figueroa and Manuel Fernández [UAM]. Análisis de diseño bioclimático para aulas primarias en climas cálidos. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 103–107, 2004.
- [10] Roberto García [UAM]. Aplicación de estrategias de diseño bioclimático para ahorro de energía en edificios educativos institucionales. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 117–122, 2004.
- [11] Ramona Romero, Gonzalo Bojórquez, Ricardo Gallegos, Eduardo Vázquez, María Corral, and Aníbal Luna [UABC]. Proyecto interinstitucional de investigación aplicada en confort térmico y ahorro de energía en la vivienda. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 73–78, 2005.
- [12] Claudia Nuriulú and Diego Morales [FA-UNAM]. Análisis térmico de cubiertas en viviendas de interés social en Tuxtla Gutiérrez, Chiapas. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-21, 2007.
- [13] Iván Oropeza [II-UNAM]. Adecuación bioclimática de una casa en la zona del Valle de Tehuacán, Puebla. Memoria de la XXXI Semana Nacional de Energía Solar, pages ABC-41, 2007.
- [14] Roberto García [UAM] and Gerardo Feijóo [Secretaría de Medio Ambiente del D.F.]. Evaluación de cubiertas verdes para confort térmico y ahorro de energía. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-58, 2009.

- [15] Elide Staines and Javier Terrazas [UACJ]. El muro verde como ahorrador de energéticos, caso: Ciudad Juárez, Chihuahua. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-07, 2010.
- [16] Gustavo Sousa [II-UNAM]. Beneficios térmicos energéticos y ambientales de la rehabilitación en la vivienda mexicana para lograr confort, inteligencia y sustentabilidad (Caso: Puerto Peñasco, Sonora). Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-61, 2010.
- [17] Simon Bright [Solarco Ltda]. Ventilación por convección natural y balance térmico: Teatro Jorge Eliecer Gaitan - Bogota - Colombia. Proceedings of the ISES Millennium Solar Forum 2000, pages 139–142, 2000.
- [18] Simon Bright and Peter Bright [Solarco Ltda]. Nueva sede corporación Ecofondo - Edificio de oficinas. Proceedings of the ISES Millennium Solar Forum 2000, pages 143–145, 2000.
- [19] Gloria Castorena and Aníbal Figueroa [UAM]. Vivienda bioclimática en Tepotzotlán Estado de México. Memoria de la XXV Semana Nacional de Energía Solar, pages 7–9, 2001.
- [20] Aníbal Figueroa [UAM]. Ecotecnologías y sistemas de iluminación natural y artificial en los anexos del edificio H. Memoria de la XXV Semana Nacional de Energía Solar, pages 139–142, 2001.
- [21] Aníbal Figueroa and Gloria Castorena [UAM]. Vivienda bioclimática en las antiguas casas de recaudación del colegio de Tepotzotlán, Estado de México. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 141–145, 2002.
- [22] Ana Velasco [UMICH] and Pedro Lina [IPN]. Las modificaciones empíricas al diseño arquitectónico de la vivienda de interés social y sus consecuencias en el confort interior. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 25–28, 2003.
- [23] Aníbal Figueroa and Gloria Castorena [UAM]. Evaluación, análisis y propuestas de adecuacíon bioclimática en la sala audiovisual K001. Memoria de la XXVII Semana Nacional de Energía Solar, pages 79–82, 2003.
- [24] Roberto García and Eleuterio González [UAM]. Integración de estrategias bioclimáticas para obtención de confort térmico y lumínico en edificaciones

- comerciales. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 147–151, 2004.
- [25] Aída Ceballos and Noemí Bravo [FA-UNAM]. Comportamiento térmico de un edificio en el centro histórico de la Ciudad de México. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-06, 2009.
- [26] Santiago Díaz, Raúl Ruiz, and Gabriel Castañeda [UACH]. Comportamiento térmico y estrategias de diseño para la envolvente de la casa Díaz, en Chiapa de Corzo, Chiapas. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–30, 2009.

12. Autogeneración integrada

La autogeneración integrada se trata de sistemas de producción de energía incorporados a las edificaciones. En este capítulo se presentan trabajos relativos a sistemas fotovoltaicos de autogeneración integrada y uno relacionado a un sistema eólico.

En los congresos de la ANES, del 2000 al 2010, se han publicado 8 trabajos relativos a este tema.

En el 2003, Néstor Mesa y David Morillón presentan los resultados de un estudio que evalúa el potencial solar en entornos urbanos. Mencionan que en las zonas con mayor potencial, se puede alcanzar el 100 % del consumo requerido para calentamiento de agua y calefacción interior [1].

En el 2004, Robert Foster, Luis Estrada, Martín Gómez y Alma Cota muestran que unos sistemas domésticos fotovoltaicos de iluminación, que fueron instalados en Chihuahua, han funcionado excepcionalmente sin presentar ningún problema significativo a lo largo de cinco años. Estos sistemas fueron instalados en colaboración con USAID, USDOE y Laboratorios Sandia [2].

Claudia Vázquez analiza los factores sociales, culturales, políticos y tecnológicos necesarios par una correcta aplicación de Energía Solar Fotovoltaica dentro de un ecosistema urbano. Concluye que esta alternativa energética es aplicable a la ciudad de León, Guanajuato y que coadyuvará a una mejora sustancial de la calidad de vida en nuestro entorno [3].

En el 2006, Carlos Romo expone la importancia de la energía solar. Propone su integración en la arquitectura y su enseñanza en los programas de estudio de esta disciplina [4].

Miguel Escalona, Julio Peláez, Susan Gamez, M. Bello, I. Vázquez, F. Pretellín, M. Alvarado y E. Blanchet presentan el Proyecto Eceltol; un invernadero autosuficiente con una estructura cilíndrica en posición horizontal. Es capaz de captar y filtrar el agua pluvial y autogenerar energía por medio de celdas solares, la cual se utiliza para una bomba de agua y un extractor de aire [5].

En el 2010, Claudia Cruz y Judith Ley presentan los resultados del estudio de sombras del puerto de San Felipe en Baja California, donde con apoyo de una imagen satelital, se identifican las áreas urbanas con mayor exposición solar; como un primer paso a la planeación de zonas aptas para alojar energías alternativas [6].

En el 2010, Enrique Caldera presenta tres viviendas bioclimáticas construídas en Guanajuato, con captación y almacenamiento de agua de lluvia, autoabastecimiento eléctrico con energía solar y eólica, iluminación natural, calefacción y

calentamiento de agua con energía solar y respaldo de biocombustibles, tratamiento biológico de residuos orgánicos y aguas residuales que se destinan al riego de árboles frutales. El objetivo de esta Ecoaldea es demostrar que existen modos alternativos de vida [7].

Liliana Campos utiliza el túnel de viento y simulaciones con el software Fluent para analizar la dinámica del viento en nueve configuraciones de un conjunto de edificios, modificando su orientación y la separación entre los mismos. Asimismo, se tiene el objeto de analizar posibles puntos de integración de pequeñas turbinas eólicas para la generación de electricidad [8].

- [1] Néstor Mesa [CRICYT] and David Morillón [II-UNAM]. El acceso al sol, como base para la planificación urbana. Caso Área Metropolitana de Mendoza, Argentina. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 83–88, 2003.
- [2] Robert Foster, Luis Estrada, Martín Gómez [New Mexico State University], and Alma Cota [UACJ]. Evaluación de la confiabilidad de los sistemas fotovoltaicos domésticos de iluminación Solisto a cinco añós de su instalación en el estado de Chihuahua. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 411–416, 2004.
- [3] Claudia Vázquez [FA-UNAM]. Energía solar fotovoltaica para viviendas de interés social en León, Guanajuato. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 423–425, 2004.
- [4] Carlos Romo [FA-UNAM]. Arquitectura solar en México. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 29–32, 2006.
- [5] Miguel Escalona, Julio Peláez, Susan Gamez, M. Bello, I. Vázquez, F. Pretellín, M. Alvarado, and E. Blanchet [Proyecto Ecológico Oceltol]. Módulo autónomo para agricultura orgánica con micro clima controlado bajo cubierta plástica. Memoria de la XXX Semana Nacional de Energía Solar, pages 187–190, 2006.
- [6] Claudia Cruz and Judith Ley [UABC]. Estudio de sombras como herramienta complementaria para encontrar áreas aptas de aprovechamiento solar. Caso

- de estudio: San Felipe, B.C., México. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-04, 2010.
- [7] Enrique Caldera [Grupo Acción Interdisciplinaria Ambiental A.C.]. La Ecoaldea Los Carrizos. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-09, 2010.
- [8] Liliana Campos [Low Carbon Architecture]. Evolución del recurso eólico para generación de energía eléctrica en zonas urbanas. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–47, 2010.

13. Transferencia de calor en edificaciones

En este capítulo se presentan estudios de transferencia de calor a través de toda la edificación. El desempeño térmico en una edificación depende de la mágnitud de las pérdidas y ganancias de calor que está teniendo en un momento dado.

Esta sección se ha dividido en tres subsecciones: simulaciones numéricas y modelos matemáticos, simulaciones por computadora, y experimentos. En la categoría de simulaciones numéricas y modelos matemáticos se incluyen los trabajos en los se que realizan estudios de transferencia de calor por medio de simulaciones numéricas o se desarrolla un modelo matemático para este fin. El apartado de simulaciones por computadora comprende los artículos en los que se realizan ensayos de transferencia de calor por medio de programas computacionales. Por último, en la parte de experimentos se incluyen los trabajos en los que llevan a cabo pruebas prácticas de transferencia de calor.

Del 2000 al 2010, en los congresos de la ANES, se han presentado 56 publicaciones en este tema. Algunos de los trabajos aparecen más de una vez ya que pertenecen a dos subsecciones. Dentro de estas publicaciones 10 se encuentran dentro de simulaciones numéricas y modelos matemáticos, 24 son referentes a simulaciones por computadora y 25 pertenecen a la subsección de experimentos.

Los grupos de investigación sobresalientes son la Universidad Autónoma de Baja California, con Aníbal Luna (9 publicaciones), Gonzalo Bojórquez (8) y Ricardo Gallegos (6); el Instituto de Ingeniería de la UNAM, con David Morillón (7) e Iván Oropeza (5); la Universidad Autónoma de Chiapas, con Gabriel Castañeda (6); la Universidad de Sonora, con Irene Marincic (5); la Universidad Autónoma de Baja California Sur, con Oscar Reséndiz y Federico Poujol (5); y en menor medida, Raúl Ruiz de la UNACH (4); Manuel Ochoa y Jesús Pérez de la UNISON (3); Alfredo Flores de la UABCS (3); María Corral de la UABC (3); la Universidad de Colima, con Gabriel Gómez (3); y Daniel Solís (3) que trabaja en el II-UNAM y el Instituo Politécnico Nacional.

En el área de simulaciones por computadora, específicamente, destacan Aníbal Luna (8), Gonzalo Bojórquez (7) y Ricardo Gallegos (5) de la UABC, seguidos por David Morillón (5) del II-UNAM. En el área de experimentos sobresale Gabriel Castañeda (5) de la UNACH.

13.1. Simulaciones numéricas y modelos matemáticos

En el 2000, Miguel Porta, Eduardo Rubio, José Fernández y Victor Gómez presentan un modelo matemático que representa el comportamiento térmico de una casa habitación. Los resultados se validan mediante la experimentación de un modelo físico con casetas similares a las casas de interés social, con una escala 1:2 [1].

En el 2003, Irene Marincic, Manuel Ochoa y Antonio del Río presentan un método para caracterizar el comportamiento térmico en los edificios, con pocos parámetros y mediante cálculos simples. Se propone un filtro de correlación asociado a este modelo que pueda filtrar variables no correlacionadas en la respuesta térmica y mantener las que tengan una correlación relevante [2].

Jesús Pérez, Roberto García, Rafael Cabanillas y Fernando Hinojosa presentan un modelo matemático simplificado de balance térmico basado en la admitancia de los materiales y reportado por Szokolay en 1984. Se comprueba mediante Trnsys y mediciones in situ [3].

Alfredo Flores, Miguel Aldana, Oscar Reséndiz y Federico Poujol desarrollan, a través de Matlab, un esquema de discretización de elemento finito y se genera una solución numérica (con condiciones de frontera tipo Dirichlet y laterales tipo Neumann). El objeto de este trabajo es aportar una herramienta para evaluar rápida y eficazmente el impacto de la utilización de diversos elementos aislantes [4].

En el 2007, Irene Marincic y Antonio del Río analizan la precisión de un modelo de red neuronal para la predicción de temperaturas interiores de un edificio, a partir de las temperaturas exteriores. Se plantea una red de tres neuronas, ubicadas en dos capas. Se compara con otro método desarrollado por los autores, el de la "Función-Respuesta". Los resultados muestran que el modelo de redes neuronales ofrece grandes posibilidades para mejorar la precisión en la predicción [5].

En el 2009, Mariluz Arroyo y Diego Morales muestran una metodología para el diseño de espacios térmicamente equilibrados a través del análisis de los factores personales, ambientales y espaciales de una edificación habitacional de departamentos en clima cálido-húmedo; con el fin de evaluar su comportamiento térmico de manera cuantitativa a través de ecuaciones de calculo térmico, para posteriormente dar propuestas de diseño en relación a la mitigación de calor en el interior [6].

Ramón Tovar y Antonio Castillo desarrollan un modelo teórico, que se valida con experimentos, de la transferencia de calor en una habitación con un techo

frío y una fuente de calor puntual en el piso. Se circula fluido mecánicamente a través del techo y se utilizan depósitos de agua fría o la capa superior de la tierra como sumideros de calor [7].

En el 2010, Iván Oropeza y David Morillón muestra los estudios previos que se han hecho en torno a la influencia de la infiltración en el balance térmico de las edificaciones. Proponen un modelo matemático propio que describe el comportamiento de la infiltración [8].

Guadalupe Huelsz, Guillermo Barrios, Jorge Rojas y Pablo Elías analizan siete indicadores del desempeño térmico de muros y techos de la envolvente de una edificación no climatizada por medio de simulaciones numéricas. Se discuten las ventajas y desventajas de cada uno de ellos [9].

Jesús Pérez, Rafael Cabanillas, Fernando Hinojosa y Ana Borbón realizan un estudio comparativo de la NMX-C-460-ONNCCE-2009 en cuanto a la resistencia térmica que establece, contra una norma europea (UNE EN-ISO 6946). Los cálculos se efectúan aplicando el método de diferencias finitas. Se concluye que la norma mexicana sobreestima el valor de R del techo ya que se basa en un modelo unidireccional [10].

13.2. Simulaciones por computadora

En el 2000, Aníbal Luna, Ricardo Gallegos y Gonzalo Bojórquez realizan una simulación térmica a través de Doe 2.1e en la cual se encontró que el adobe presentó una disminución en la carga térmica con respecto al bloque de concreto y ladrillo de barro; sin embargo al disminuir la carga térmica por conducción en los muros, ésta aumentó a través de la loza [11].

En el 2002, Inocente Bojórquez, Fernando Flores y Arturo Llovera proponen el uso de nuevos materiales: un concreto a base de fibras de origen orgánico provenientes de la caoba. Determinan su conductividad por medio de placa caliente y simulan su desempeño térmico por medio de Doeplus [12].

Teresita Verdugo y María Corral realizan un diagnóstico de las condiciones de confort térmico de una vivienda popular en Mexicali y se hacen propuestas para adecuación ambiental. Al simular las propuestas por medio de Doe 2.1e se encontró que la que más reduce el costo de la energía consumida es la de colores claros en muros y techos, seguida por la de control de la infiltración y por último la de cambio de orientación [13].

En el 2003, Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos y Akemi Hotta simulan con el Doeplus el costo de climatización artificial en el periodo de verano, comparando los sistemas tradicionales de bloque de concreto, ladrillo y adobe

contra el sistema constructivo Luna-Bojórquez. Éste último se compone por los materiales reciclados mezcla de sílice y lodo de papel, mezclados con cemento portland tipo 1, cal hidratada, aditivo inclusor de aire y agua. Los resultados muestran una reducción en un 12.52 % del costo por uso de aire acondicionado al aplicar el sistema constructivo L-B con respecto al sistema de bloque de concreto común [14].

Ricardo Gallegos, Adaliz Ochoa, Gonzalo Bojórquez y Aníbal Luna realizan estimaciones del impacto que tiene la infiltración sobre la carga térmica. Se hace uso de datos experimentales obtenidos con pruebas de presurización, acoplados al modelo de Sherman-Gursmund aplicado en el simulador DOE 2.1e [15].

En el 2004, Carlos Carrazco y David Morillón analizan a través de Trnsys el comportamiento térmico de la arquitectura vernácula en clima cálido seco (noroeste de México) con el objeto de emitir un diagnóstico de las ventajas y desventajas de sus elementos bioclimáticos [16].

En el 2005, Gonzalo Bojórquez, Aníbal Luna, Edgar Cota y Javier Espinoza desarrollan un proyecto arquitectónico para un caso real, utilizando métodos bioclimáticos. Se evalúa la carga térmica por medio del programa computacional CalTer y el asoleamiento de las ventanas a través de SolarTool [17].

G. Álvarez, M.A. Chargolla, Erick Chumacero y Oscar del Razo presentan los resultados del comportamiento térmico del edificio del Centro Morelense de Innovación y Transferencia Tecnológica (CEMITT). Se simulan las ganancias térmicas en Trnsys, modificando los parámetros ópticos del techo y paredes [18].

En el 2006, Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos, Jorge Aguilar y Oscar Gómez estiman, por medio de una simulación en Doe 2.1e, la carga térmica en una edificación por uso de vidrios laminados con películas delgadas semiconductoras, comparándolos con vidrios de uso en el mercado nacional [19].

En el 2007, Oscar Reséndiz, Elizabeth Chávez, Federico Poujol, Alfredo Flores y David Morillón realizan un análisis comparativo, por medio del programa Trnsys, de dos viviendas de interés social construidas con ladrillo y adobe respectivamente. Los resultados muestran que la vivienda de adobe presenta un mejor comportamiento térmico y un subsecuente ahorro de energía [20].

Sildia Mecott, Jesús Cano, Rafael Alavez, Ricardo Gallegos, Gonzalo Bojórquez y Aníba Luna realizaron simulaciones del comportamiento térmico de cuatro diferentes sistemas constructivos por medio de Doe 2.1e, para la ciudad de Oaxaca, Oaxaca. El sistema que mejor eficiencia térmica presentó fue el de ladrillo rojo común con cubierta de concreto armado. Se observó que existe una reducción de 37 % en el consumo de energía en un diseño bioclimático con respecto a uno convencional [21].

Ramona Romero, Gonzalo Bojórquez, Eduardo Vázquez, Aníbal Luna, Ricardo Gallegos, María Corral, Gabriel Gómez y Rafael García evalúan térmica-energéticamente distintos diseños de vivienda económica utilizados regularmente en el clima cálido-seco. Se llevaron a cabo encuestas y simulaciones a través de Trnsys 16. Se concluye que el espacio de las viviendas es insuficiente y el sistema de techo es deficiente [22].

En el 2008, Oscar Reséndiz, Federico Poujol, Elizabeth Chávez, Miguel Ojeda, David Morillón y Luis Fernández evalúan térmicamente, por medio de simulación en Trnsys, dos casas con materiales de construcción diferentes (bloc de concreto y adobe) para la ciudad de La Paz. Se observa que la casa de abobe tiene un mejor amortiguamiento térmico [23].

En el 2009, Hiriam Díaz e Inocente Bojórquez definen la orientación e inclinación de techumbres óptimas para el ahorro de energía en la vivienda ubicada en el clima cálido-húmedo. Los cálculos se realizaron a través del software "VIVE-2" creado en la Universidad de Quintana Roo, con ocho diferentes orientaciones y cuatro ángulos de inclinación. Se concluye que la peor inclinación fue la de 0° y la mejor orientación para el caso de estudio fue sur [24].

Daniel Solís simula por medio de DesignBuilder el consumo eléctrico al sombrear parcial y totalmente distintas viviendas con datos climáticos de 6 ciudades con clima cálido-seco. Se concluye que el uso de aleros y persianas reducen alrededor del 4 % el consumo eléctrico, mientras que un sombreado completo (por medio de una lona tensada) lo reduce un 14 % [25].

Este mismo autor utiliza el DesignBuilder para simular el efecto del uso de aislamiento térmico y otras técnicas bioclimáticas en una vivienda económica, en 6 ciudades con clima cálido-seco. Se determina que el uso de aislamiento redujo el consumo eléctrico en el caso climatizado, pero fue contraproducente en el caso no climatizado. Por otro lado, aumentar la altura de la losa mejoró el confort, pero fue contraproducente en el caso climatizado [26].

Oscar Reséndiz, Federico Poujol, David Morillón, Luis Fernández y Aníbal Luna evalúan distintas estrategias de confort térmico y ahorro energético mediante simulaciones en Trnsys 16. Se recomienda: aislar techo y ciertos muros (dependiendo de la orientación), poner ventanas en la parte superior de muros, así como sombreadores en caso de requerirse, elegir la mejor orientación de la casa, elegir plantas que otorguen sombra y consuman poca agua, dejar alturas mínimas de 3m para techos [27].

En el 2010, Iván Oropeza y David Morillón presentan el programa de simulación energética Energy Plus. Muestra dos casos para ejemplificar su modo de uso. Mencionan sus ventajas y desventajas en comparación con otros programas

de simulación. Los resultados obtenidos confirman que este programa es uno de los mejores en su ramo [28].

Agustín Torres e Iván Oropeza comparan los resultados obtenidos al utilizar Ecotec y Energy Plus. Se simula el comportamiento térmico del edificio residencial Torre Maple en la Ciudad de México [29].

Alma García, Victor Fuentes e Irene Marincic evalúan mediante simulación digital el comportamiento térmico y el consumo eléctrico de una vivienda económica en Hermosillo. Asímismo, se evalúan propuestas para los elementos constructivos (muros y cubiertas) que permitan reducir las cargas térmicas [30].

Daniel Solís propone estrategias simples de diseño bioclimático y las simula por medio de DesignBuilder para analizar el efecto individual de cada técnica sobre el confort en caso de no contar con climatización, y sobre el consumo anual de energía eléctrica en caso de contar con ella [31].

Tatiana Hernández, Deiscy Sánchez, Gabriel Castañeda y Raúl Ruiz comparan los resultados obtenidos de las mediciones in situ (utilizando HOBO) en una vivienda de interés social y un edificio habitacional en Chiapas, con los resultados de la simulación por medio de Ecotec. Se concluye que el software Ecotec tiene cierto margen de error [32].

Iván Oropeza y Franciso López comparan los resultados obtenidos en la medición térmica con equipos HOBO con los resultados obtenidos mediante simulación con Energy Plus, del edificio del siglo XVIII denominado Casa de la Ciudad, ubicado en Oaxaca. Se describen posibles soluciones de control solar y se concluye que los resultados del software son muy cercanos a la realidad [33].

Norma Rodríguez, Jesús Hinojosa, Karl Kohlhof y Simon Tonn evalúan numérica y experimentalmente el confort interno en modelos de cuarto. El cálculo numérico de la transferencia de calor, por convección forzada y libre, se hace mediante simulación en CFD (Fluent 6.3). Los resultados son comparados con datos experimentales [34].

13.3. Experimentos

En el 2000, Irene Marincic y Antoni Isalgué realizan un análisis experimental del comportamiento térmico de edificios en relación con el exterior, mediante el registro de las temperaturas por medio de sensores a diferentes distancias de la envolvente [35].

Miguel Porta, Eduardo Rubio, José Fernández y Victor Gómez presentan un modelo matemático que representa el comportamiento térmico de una casa

habitación. Los resultados se validan mediante la experimentación de un modelo físico con casetas similares a las casas de interés social, con una escala 1:2 [1].

En el 2003, Ricardo Gallegos, Adaliz Ochoa, Gonzalo Bojórquez y Aníbal Luna describen un método experimental para la determinación del sellado de vivienda, con objeto de disminuir las cargas térmicas [36].

Oscar Reséndiz, Federico Poujol, Alfredo Flores, Marco Velásquez e Israel Soria plantean la autoconstrucción como alternativa para bajar los costos y sobre todo para poder dar más libertad al usuario de tener una vivienda más amplia. Se realizaron pruebas con termopares comparando a la vivienda propuesta contra una vivienda convencional [37].

En el 2004, Jesús Pérez, Ana Borbón y Lorena Cubillas monitorean una vivienda de interés social de manera continua en Hermosillo, Sonora, utilizando sistemas automáticos de recolección de datos. Se concluye que los elementos críticos son las superficies del techo y la orientación SO y NO [38].

Irene Marincic y Manuel Ochoa estudian térmicamente dos viviendas iguales, una construida con block de cemento y la otra con muros del sistema prefabricado de block de poliestireno expandido, con estructura ahogada de concreto ahogado. Se encontró que los efectos no eran los deseados. La causa principal es no haber utilizado en forma selectiva el aislamiento, considerando entres otros factores la orientación [39].

En el 2005, Teresa Argüello, Gabriel Castañeda, Carlos Cruz y Francisco Vecchia realizan mediciones térmicas de las superficies internas de techos con orientaciones norte y sur, de un prototipo experimental de vivienda social, para verificar las diferencias de ganancias térmicas como resultado de la orientación. El objeto de este experimento fue proporcionar al estudiante una herramienta práctica [40].

Estos mismos autores, junto con Luis Jiménez, evalúan el comportamiento térmico de una vivienda de interés social techada con el sistema Placa-losa [41].

María Corral presenta el comportamiento térmico de las técnicas de adecuación ambiental aplicadas a un prototipo de vivienda popular (aleros, pórtico, pergolado con 35° que bloquea radiación sólo en verano, doble techo, aislante de poliestireno en techo y paredes este y oeste). Se monitorea experimentalmente midiendo temperaturas superficiales [42].

En el 2006, Gabriel Gómez y Armando Alcántara evalúan el desempeño térmico de una casa localizada en la ciudad de Colima, diseñada con principios bioclimáticos como ventilación natural e inducida, sombreado solar e inercia térmica de la envolvente [43].

J. Reyes, R. Pineda y L. Sandoval presentan un estudio realizado sobre dos

aulas contiguas de la Universidad de Colima. Se encontró que existían pequeñas fluctuaciones debido a la actividad humana dentro de las aulas [44].

Luis Fajardo y Armando Alcántara realizan una investigación de tipo experimental en la cual se compararon dos módulos, uno sin protección y otro con cubierta de pasto. Se concluyó que éste sistema es eficiente un 70 % en el ahorro de energía y 56 % en el confort térmico [45].

José Mercado, Laura Mercado y Manuel Ochoa analizan una casa habitación diseñada y construida bajo el concepto bioclimático. Se evaluó el comportamiento térmico concluyendo que los resultados fueron satisfactorios [46].

Eduardo González, Gaudy Bravo, Rosalinda González, Lesvia Pérez, Axa Rojas, Magalis Gallardo, Elizabeth Tosí y Rafael Falcón realizan un estudio del comportamiento térmico de la VBP-1, una casa prototípica construida bajos criterios bioclimáticos. Se analizan las temperaturas características, el factor decremental y el retraso térmico [47].

En el 2007, Julieta Acuña y Gloria Castorena realizan un proyecto arquitectónico que responde a las condiciones climáticas de Zacatecas. Se evalúa un modelo a escala por medio del heliodón y de la geometría solar con la Proyección Ortogonal. Los criterios bioclimáticos aplicados son: orientación SE de la fachada para mayor incidencia solar, configuración compacta, inercia térmica de muros sin colindancia a través de un mayor espesor, doble acristalamiento de ventas e invernadero hacia el sur [48].

En el 2008, Julieta Acuña, Rubén Dorantes y Jesús Mota monitorean durante nueve meses dos viviendas, una convencional y otra construida bajo principios bioclimaticos, en el estado de Zacatecas. La vivienda bioclimática presenta un mejor desempeño térmico [49].

Andrés Quiroa, Francisco Vecchia, Gabriel Castañeda y Carlos Cruz evalúan el comportamiento térmico, por medio de termopares conectados a un datalogger, de una vivienda que utiliza como techumbre lámina y plafón fabricados a partir del reciclado de Tetra Pak. Se concluye que el desempeño es regular-bueno, ya que se podría mejorar el comportamiento térmico [50].

En el 2009, Juan Solís, Raúl Ruiz y Gabriel Castañeda comparan el comportamiento térmico de dos viviendas verticales, una con malla que sombrea la pared de una habitación. Se midieron las temperaturas superficiales interiores de los muros y se encontró que la estrategia propuesta mejora el desempeño térmico ante la radiación solar. Sin embargo, después de las 22 horas, en el muro sin protección desciende más la temperatura debido al enfriamiento convectivo [51].

Raymundo Mayorga y Marcos González estudian, analítica y experimentalmente, cómo se distribuye la energía proporcionada por la radiación solar en

función de la configuración geométrica de la envolvente. Se analizan cuatro diferentes formas: cubo, pirámide, bóveda y cúpula. Se encuentra que las superficies planas permiten mayor ganancia térmica (y mayores pérdidas a su vez), mientras que la cúpula semiesférica registra la menor ganancia térmica [52].

José Moreno, Leandro Sandoval y Gabriel Gómez presentan las mediciones de temperatura que se obtuvieron al estudiar dos casas de interés social: una sin habitar y la otra habitada. Se registró la actividad humana de cuándo y cuánto tiempo abrían o cerraban las puertas y ventanas. Se encontraron más variaciones en la casa habitada, la cual arrojó una temperatura un poco más baja por las conductas de los usuarios, como dejar la puerta abierta [53].

En el 2010, Ana Avendaño y Verónica Huerta revisan y presentan las propiedades térmicas de distintos materiales: ladrillo multiperforado, block cementoarena y concreto. Luego analizan el comportamiento térmico y energético de estos materiales en un proyecto de viviendas ubicado en Veracruz a través de mediciones en el sitio. Finalmente se plantean recomendaciones para el diseño de la envolvente [54].

Tatiana Hernández, Deiscy Sánchez, Gabriel Castañeda y Raúl Ruiz comparan los resultados obtenidos de las mediciones in situ (utilizando HOBO) en una vivienda de interés social y un edificio habitacional en Chiapas, con los resultados de la simulación por medio de Ecotec. Se concluye que el software Ecotec tiene cierto margen de error [32].

Claudia Santos, Magaly Velasco, Karla Ovando, Gabriel Castañeda y Raúl Ruiz evalúan el comportamiento térmico de diferentes viviendas de interés social ubicadas en Chiapas. Para esto se midieron temperaturas superficiales en muros y techos por medio de registradores automáticos de la familia HOBO [55].

Iván Oropeza y Francisco López comparan los resultados obtenidos en la medición térmica con equipos HOBO con los resultados obtenidos mediante simulación con Energy Plus, del edificio del siglo XVIII denominado Casa de la Ciudad, ubicado en Oaxaca. Se describen posibles soluciones de control solar y se concluye que los resultados del software son muy cercanos a la realidad [33].

Raymundo Mayorga y Marcos González comprueban cuantitativamente si la geometría de la envolvente es una variable de control térmica, por medio de mediciones de temperatura dentro de cuatro modelos tridimensionales con diferentes formas geométricas. Se concluye que las superficies curvas presentan menor ganancia térmica que las planas [56].

- [1] Miguel Porta, Eduardo Rubio, José Fernández [Centro de Investigaciones Biológicas de Noroeste], and Victor Gómez [Centro Interdisciplinario de Ciencias Marinas]. Transferencia de calor en casas habitación. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 65–68, 2000.
- [2] Irene Marincic, Manuel Ochoa [UNISON], and Antonio del Río [CIE-UNAM]. Respuestas térmicas frecuenciales para caracterizar edificios en diferentes épocas del año. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 29–32, 2003.
- [3] Jesús Pérez, Rafael Cabanillas, Fernando Hinojosa [UNISON], and Roberto García [UAM]. Desarrollo de un programa de simulación térmica basado en la admitancia de los materiales. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 55–58, 2003.
- [4] Alfredo Flores, Miguel Aldana, Oscar Reséndiz, and Federico Poujol [UABCS]. El acceso al sol, como base para la planificación urbana. Caso Área Metropolitana de Mendoza, Argentina. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 89–93, 2003.
- [5] Irene Marincic [UNISON] and Antonio del Río [CEMITT]. Redes neuronales para el estudio del comportamiento térmico de edificios. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–11, 2007.
- [6] Mariluz Arroyo and Diego Morales [FA-UNAM]. Espacios térmicamente balanceados en edificios en clima cálido-húmedo. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-07, 2009.
- [7] Ramón Tovar [CIE-UNAM] and Antonio Castillo [CIE-UNAM / IPN]. Enfriamiento pasivo por techos fríos en habitaciones. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-47, 2009.
- [8] Iván Oropeza and David Morillón [II-UNAM]. Influencia de la infiltración del aire en el balance global térmico de las edificaciones. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-03, 2010.
- [9] Guadalupe Huelsz, Guillermo Barrios, Jorge Rojas [CIE-UNAM], and Pablo Elías [UAT]. Análisis de indicadores del desempeño térmico de la en-

- volvente de una edificación no climatizada. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-65, 2010.
- [10] Jesús Pérez, Rafael Cabanillas, Fernando Hinojosa, and Ana Borbón [UNI-SON]. Comparación de la resistencia térmica de un sistema constructivo con la NMX-C-460-ONNCCE-2009 y otros métodos. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-72, 2010.
- [11] Aníbal Luna, Ricardo Gallegos, and Gonzalo Bojórquez [UABC]. Estudio de comportamiento térmico del adobe con el simulador DOE 2.1E. Proceedings of the ISES Millennium Solar Forum 2000, pages 147–149, 2000.
- [12] Inocente Bojórquez, Fernando Flores, and Arturo Llovera [UQROO]. Fibras orgánicas del sureste mexicano como opción para ahorro de energía en la vivienda. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 47–49, 2002.
- [13] Teresita Verdugo and Maria Corral [UABC]. Efectos de la aplicación de técnicas de adecuación ambiental de bajo costo en el consumo de la energía consumida y el confort térmico de una vivienda popular. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 175–179, 2002.
- [14] Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos, and Akemi Hotta [UABC]. Estimación de costo por climatización artificial de un prototipo de vivienda con el sistema constructivo LB, para muros. Memoria de la XXVII Semana Nacional de Energía Solar, pages 5–9, 2003.
- [15] Ricardo Gallegos, Adaliz Ochoa, Gonzalo Bojórquez, and Aníbal Luna [UABC]. Impacto térmico de la infiltración de la vivienda de Mexicali. Memoria de la XXVII Semana Nacional de Energía Solar, pages 15–17, 2003.
- [16] Carlos Carrazco [CIE-UNAM] and David Morillón [II-UNAM]. Análisis del comportamiento de la arquitectura vernácula de clima cálido seco. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 171–175, 2004.
- [17] Gonzalo Bojórquez, Aníbal Luna, Edgar Cota, and Javier Espinoza [UABC]. Adecuación ambiental de residencia en clima cálido extremoso: Mexicali, Baja California. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 7–13, 2005.

- [18] G. Álvarez [CENIDET], M.A. Chagolla, Erick Chumacero, and Oscar del Razo [I.T. de Zacatepec]. Estudio de cargas térmicas en el CEMITT (Centro Morelense de Innovación y Transferencia Tecnológica. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 111–114, 2005.
- [19] Gonzalo Bojórquez, Aníbal Luna, Ricardo Gallegos [UABC], Jorge Aguilar, and Oscar Gómez [CIE-UNAM]. Carga térmica por el uso de vidrios laminados con películas delgadas semiconductoras y vidrios comerciales. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 67–72, 2006.
- [20] Oscar Reséndiz, Elizabeth Chávez, Federico Poujol, Alfredo Flores [UABCS], and David Morillón [II-UNAM]. Evaluación térmica, mediante simulación, de dos casas con materiales diferentes en la ciudad de La Paz, B.C.S. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–19, 2007.
- [21] Sildia Mecott, Jesús Cano, Rafael Alavez [IPN], Ricardo Gallegos, Gonzalo Bojórquez, and Aníbal Luna [UABC]. Comportamiento térmico y diseño bioclimático de un prototipo de vivienda para Oaxaca, Oaxaca. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–30, 2007.
- [22] Ramona Romero, Gonzalo Bojórquez, Eduardo Vázquez, Aníbal Luna, Ricardo Gallegos, María Corral, Gabriel Gómez [UABC], and Rafael García [UCOL]. Energía y confort térmico en la vivienda económica en Mexicali, Baja California, México: avances de investigación. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–37, 2007.
- [23] Oscar Reséndiz, Federico Poujol, Elizabeth Chávez, Miguel Ojeda [UABCS], David Morillón, and Luis Fernández [II-UNAM]. Evaluación técnica económica de dos casas de interés social con materiales diferentes en la ciudad de La Paz, B.C.S. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC–25, 2008.
- [24] Hiriam Díaz and Inocente Bojórquez [UQROO]. Recomendaciones para el análisis de ganancias térmicas en viviendas del caribe mexicano. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–04, 2009.
- [25] Daniel Solís [II-UNAM]. Análisis térmico en medidas de sombreado aplicadas a vivienda económica con alta carga térmica interna en 6 ciudades con clima cálido-seco. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–23, 2009.

- [26] Daniel Solís [II-UNAM]. Análisis térmico en uso de aislamiento y otras medidas bioclimáticas aplicadas a vivienda económica con alta carga térmica interna en 6 ciudades con clima cálido-seco. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-38, 2009.
- [27] Oscar Reséndiz, Federico Poujol [UABCS], David Morillón, Luis Fernández [II-UNAM], and Aníbal Luna [UABC]. Propuesta de una vivienda económica con características de confort térmico y ahorro de energía para la Ciudad de La Paz, B.C.S. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–48, 2009.
- [28] Iván Oropeza and David Morillón [II-UNAM]. Modelos de confort térmico para espacios exteriores. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-02, 2010.
- [29] Agustín Torres and Iván Oropeza [II-UNAM]. Comparación de la simulación térmica de un edificio utilizando los software Ecotec y Enegy Plus, estudio de caso: Torre Maple del conjunto residencial Bosques de las Lomas II de la Ciudad de México. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–25, 2010.
- [30] Alma García, Victor Fuentes [UAM], and Irene Marincic [UNISON]. Análisis de vivienda económica de bajo consumo de energía. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-30, 2010.
- [31] Daniel Solís [IPN]. Análisis térmico de medidas bioclimáticas simples aplicadas a vivienda económica con alta carga térmica interna en 6 ciudades con clima cálido-seco. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-48, 2010.
- [32] Tatiana Hernández, Deiscy Sánchez, Gabriel Castañeda, and Raúl Ruiz [UA-CH]. Comparación del comportamiento térmico en viviendas de clima cálido sub-húmedo por medio de modelos de simulación y estudios de campo. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-55, 2010.
- [33] Iván Oropeza [II-UNAM] and Francisco López [UVM]. Comparación del comportamiento térmico de un edificio del siglo XVIII utilizando medición de campo con equipos HOBO y simulación térmica con el software Energy Plus.

- Estudio de caso: Casa de la Ciudad, Oaxaca de Juárez, Oaxaca. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–57, 2010.
- [34] Norma Rodríguez, Jesús Hinojosa, Karl Kohlhof, and Simon Tonn [UNI-SON]. Numerical and experimental study of indoor comfort in model rooms under different climatic conditions. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–82, 2010.
- [35] Irene Marincic [UNISON] and Antoni Isalgué [U. P. de Cataluña]. Respuestas térmicas y su relación con la envolvente del edificio. *Proceedings of the ISES Millennium Solar Forum 2000*, pages 13–17, 2000.
- [36] Ricardo Gallegos, Adaliz Ochoa, Gonzalo Bojórquez, and Aníbal Luna [UABC]. Determinación experimental del grado de sellado de la vivienda. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 11–14, 2003.
- [37] Oscar Reséndiz, Federico Poujol, Alfredo Flores [UABCS], Marco Velásquez, and Israel Soria [I.T. de La Paz]. Análisis financiero y de confort de dos viviendas de interés social. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 43–47, 2003.
- [38] Jesús Pérez, Ana Borbón [UNISON], and Lorena Cubillas [UABC]. Desempeño térmico de una vivienda de interés social en la ciudad de Hermosillo, Sonora. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 81–85, 2004.
- [39] Irene Marincic and Manuel Ochoa [UNISON]. Análisis de los efectos de la utilización de nuevos materiales aislantes en viviendas en clima cálido seco. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 87–90, 2004.
- [40] Teresa Argüello, Gabriel Castañeda, Carlos Cruz [UACH], and Francisco Vecchia [U. de Sao Paulo]. Valoración térmica de techumbres con respecto a su orientación: Un ejercicio didáctico para el arquitecto. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 33–38, 2005.
- [41] Luis Jiménez, Gabriel Castañeda, Teresa Agüello, Carlos Cruz [UACH], and Francisco Vecchia [Escuela de Ingeniería de USP]. Evaluación del comportamiento térmico de vivienda social techada con el sistema placa-losa,

- ubicada en el proyecto 10x10 Chiapas, Tuxtla Gutiérrez. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 49–54, 2005.
- [42] María Corral [UABC]. Comportamiento térmico de técnicas de adecuación ambiental en vivienda para sectores de bajos ingresos en Mexicali, B.C. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 121–125, 2005.
- [43] Gabriel Gómez and Armando Alcántara [UCOL]. Casa bioclimática para clima cálido sub-húmedo. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 15–18, 2006.
- [44] J. Reyes, R. Pineda, and L. Sandoval [UCOL]. Comporamiento térmico de espacios arquitectónicos similares en un mismo edificio de la ciudad de Colima. Memoria de la XXX Semana Nacional de Energía Solar, pages 33–35, 2006.
- [45] Luis Fajardo and Armando Alcántara [UCOL]. Vegetación en cubiertas como sistema pasivo de enfriamiento en el cálido-subhúmedo: caso techo-pasto. Memoria de la XXX Semana Nacional de Energía Solar, pages 89–92, 2006.
- [46] José Mercado, Laura Mercado, and Manuel Ochoa [UNISON]. Evaluación térmica para una casa habitación con principios bioclimáticos en Hermosillo, Sonora. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 133–138, 2006.
- [47] Eduardo González, Gaudy Bravo, Rosalinda González, Lesvia Pérez, Axa Rojas, Magalis Gallardo, Elizabeth Tosí, and Rafael Falcón [U. de Zulia]. Desempeño térmico de la VBP-1: temperaturas características, factor decremental y retraso térmico. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 247–252, 2006.
- [48] Julieta Acuña and Gloria Castorena [UAM]. Prototipo de vivienda bioclimática de interés social para un clima semifrío seco: caso Zacatecas, Zac. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC-07, 2007.
- [49] Julieta Acuña, Rubén Dorantes, and Jesús Mota [UAM]. Estudio comparativo de una vivienda con principios bioclimáticos y una vivienda convencional. Caso de estudio: Ciudad Guadalupe, Zacatecas. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-26, 2008.

- [50] Andrés Quiroa, Francisco Vecchia [U. de Sao Paulo], Gabriel Castañeda, and Carlos Cruz [UACH]. Comportamiento térmico de las láminas de aglomerado Tetra Pak. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-42, 2008.
- [51] Juan Solís, Raúl Ruiz, and Gabriel Castañeda [UACH]. Comparación del comportamiento térmico en vivienda vertical en clima cálido subhúmedo utilizando malla sombra. Memoria de la XXXIII Semana Nacional de Energía Solar, pages ABC-05, 2009.
- [52] Raymundo Mayorga and Marcos González [IPN]. Morfología geométrica de la envolvente arquitectónica como elemento de control térmico. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–19, 2009.
- [53] José Moreno [I.T. de Colima], Leandro Sandoval, and Gabriel Gómez [UCOL]. Modificación del desempeño térmico de las edificaciones por abrir y cerrar puertas y ventanas. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-01, 2009.
- [54] Ana Avendaño and Verónica Huerta [UAM]. Análisis del comportamiento térmico de los materiales comúnmente utilizados en la construcción de edificios residenciales. Caso de estudio: componentes verticales, ladrillo perforado, block cemento-arena y concreto. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–51, 2010.
- [55] Claudia Santos, Magaly Velasco, Karla Ovando, Gabriel Castañeda, and Raúl Ruiz [UACH]. Evaluación del comportamiento térmico de viviendas en diferentes zonas de la ciudad de Tuxtla Gutiérrez, Chiapas. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–56, 2010.
- [56] Raymundo Mayorga and Marcos González [IPN]. Ganancia térmica a partir de la forma de la envolvente arquitectónica. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-71, 2010.

14. Estudios básicos

En este capítulo se presentan los estudios básicos relacionados con la mecánica de fluidos y la transferencia de calor. Los estudios básicos, para este caso, son experimentos o simulaciones numéricas que tienen como fin comprender los fenómenos de transferencia de energía y masa.

En la sección de mecánica de fluidos se incluyen las publicaciones que estudian el movimiento de los fluidos y las fuerzas que lo provocan. En la sección de transferencia de calor se incluyen los trabajos que estudian el paso de energía térmica entre distintos cuerpos o partes de un mismo cuerpo.

Se han publicado 7 artículos en los congreso de la ANES, del 2000 al 2010, de los cuales 3 son relativos a la mecánica de fluidos y 4 son referentes a la transferencia de calor. Los grupos que han publicado más de un artículo son el Centro Nacional de Investigación y Desarrollo Tecnológico, con Gabriela Álvarez (3 publicaciones), y la Universidad de Sonora, con Rafael Cabanillas (2).

14.1. Mecánica de fluidos

En el 2001, Jesús Xamán, Gabriela Álvarez y José Flores presentan los resultados obtenidos para el problema de la cavidad calentada diferencialmente con flujo laminar y paredes opacas para números de Grashof del orden de 10e3-10e6. [1].

En el 2003, María Cedillo y Ramón Tovar exponen los resultados de un estudio experimental del flujo de convección natural que se desarrolla en una pared vertical, calentada en su mitad inferior y adiabática en su mitad superior, dentro de una cavidad rectangular. Los resultados tienen potencial de aplicación para el entendimiento del transporte térmico en paredes compuestas de edificios [2].

En el 2009, Jesús Hinojosa y Norma Rodríguez muestran los resultados numéricos para la transferencia de calor en una cavidad rectangular ventilada con flujo turbulento, variando su temperatura y velocidad, y calentando una de las paredes [3].

14.2. Transferencia de calor

En el 2001, Rafael Cabanillas, Claudio Estrada y Gabriela Álvarez utilizan un modelo convectivo-radiativo para estudiar la transferencia de calor que se lleva a cabo entre una cavidad rectangular abierta y sus alrededores cuando se tienen diferentes inclinaciones [4].

En el 2007, Guillermo Mejía, Gabriela Álvarez y Jesús Xamán presentan los resultados del modelo teórico de una habitación simulada con una cavidad para evaluar la combinación de ventana y techo con o sin recubrimiento. Se observó que al utilizar la pintura epóxica color negro las isotermas en el interior de la cavidad forman una capa estratificada de gradientes de temperatura muy pronunciados cerca del techo [5].

En el 2009, Juan Bárcenas e Inocente Bojórquez revisan las metodologías enfocadas al estudio de la transferencia de calor a través de placas planas, en torno al modelo matemático que utilizan para calcular la temperatura de la superficie. Los resultados muestran gran variabilidad con respecto a las mediciones reales, debido a la exclusión, en algunos modelos, de la variable del ángulo de incidencia solar o de la humedad relativa, entre otros [6].

En el 2010, Benito Pérez, Rafael Cabanillas, Fernando Hinojosa y Armando Piña describen el comportamiento calorímetro bidimensional de una cavidad cerrada llena de aire, donde la transferencia se presenta por convección natural. Los resultados numéricos se obtienen reproduciendo las condiciones experimentales para cinco flujos de calor diferentes [7].

- [1] Jesús Xamán, Gabriela Álvarez, and José Flores [CENIDET]. Estudio de la transferencia de calor en una cavidad bidimensional utilizando el método de volumen finito. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 89–94, 2001.
- [2] María Cedillo and Ramón Tovar [CIE-UNAM]. Análisis de un flujo convectivo en una pared adiabática. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 117–121, 2003.
- [3] Jesús Hinojosa and Norma Rodríguez [UNISON]. Estudio de la transferencia de calor en una cavidad alargada ventilada con flujo turbulento. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–02, 2009.
- [4] Rafael Cabanillas [UNISON], Claudio Estrada [CIE-UNAM], and Gabriela Álvarez [CENIDET]. Estudio de la transferencia de calor con un modelo convectivo-radiativo para una cavidad abierta a diferentes inclinaciones. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 121–125, 2001.

- [5] Guillermo Mejía, Gabriela Álvarez, and Jesús Xamán [CENIDET]. Transferencia de calor en habitaciones con pared semitransparente y techo con diferentes recubrimientos. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–27, 2007.
- [6] Juan Bárcenas [U. del Caribe] and Inocente Bojórquez [UQROO]. Determinación de la temperatura superficial en ambientes soleados, comparativa de modelos matemáticos. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–22, 2009.
- [7] Benito Pérez, Rafael Cabanillas, Fernando Hinojosa, and Armando Piña [UNI-SON]. Estudio numérico-experimental de la transferencia de calor en una cavidad rectangular, en dos dimensiones. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-70, 2010.

15. Urbanismo sustentable

El urbanismo sustentable es la serie de proyectos y acciones enfocadas a desarrollar los asentamientos de población con una visión a futuro basada en la sustentabilidad. El concepto de sustentabilidad se refiere a satisfacer las necesidades actuales, sin poner en peligro la capacidad de las futuras generaciones para satisfacer las suyas.

Del 2000 al 2010, en los congresos de la ANES, se han presentado 34 trabajos en torno al urbanismo sustentable. Los grupos con más publicaciones en este tema son el Instituto de Ingeniería de la UNAM, con David Morillón (5 publicaciones); el Centro Regional de Investigaciones Científicas y Tecnológias (Argentina), con Néstor Mesa y Carlos de la Rosa (4); la Universidad Autónoma de Cd. Juarez, con Leticia Peña (4); la Facultad de Arquitectura de la UNAM, con Diego Morales (3); la Universidad de Sonora, con Manuel Ochoa (3); y en menor medida, la Universidad de Guadalajara, con Silvia Arias y David Ávila (2); la Universidad Autónoma Metropolitana, con Victor Fuentes y Patricia Cuevas (2); Judith Hernández de la UACJ (2); y Mariela Arboit del CRICYT (2).

En el 2001, Claudia Mercedes y David Morillón proponen estrategias para el diseño bioclimático tanto urbano como arquitectónico y muestran su importancia energética, social y ambiental, ya que a través de éste se consume sólo el 6 % del gasto energético habitual [1].

Gabriela Ávila y Diego Morales tratan acerca del efecto e impacto que ocasiona el exceso de instalaciones de equipos de aire acondicionado en los edificios públicos o comerciales [2].

En el 2002, Néstor Mesa y Carlos de la Rosa aportan información cuantitativa sobre las correlaciones entre las características morfológicas de las unidades urbanas (manzanas) y de las edilicias, para Mendoza, Argentina [3].

Emigdo Suárez y Tamara Herrera ofrecen recomendaciones para la prevención y mitigación de los desastres naturales de ocurrencia más probable en Cuba [4].

Pedro Chargoy y Elsa Chargoy ofrecen una alternativa de construcción de vivienda de interés social capaz de brindar confort, funcionalidad y ahorro de energía mediante la planeación de la envolvente, distribución de los espacios interiores, orientación con respecto al sol y a los vientos dominantes [5].

Roberto García y Silvia Morales proponen una arquitectura bioclimática enfocada a edificios de educación básica que promueva la sustentabilidad de los recursos como la energía eléctrica y el agua, y genere una nueva cultura ambiental en el sector educativo básico [6].

Anabel Negrete, Alicia Martínez y Laura Candelas establecen propuestas urbanas y arquitectónicas de estrategias bioclimáticas para complementar el actual Plan de Desarrollo Urbano Arquitectónico Sustentable del Gobierno del Estado de Querétaro [7].

En el 2003, Néstor Mesa y David Morillón presentan los resultados de un estudio que evalúa del potencial solar en entornos urbanos. Mencionan que en las zonas con mayor potencial, se puede alcanzar el 100 % de los consumos requeridos para calentamiento de agua y calefacción interior [8].

Martha Canales proporciona estrategias básicas para la elaboración de proyectos en la ciudad de Pachuca. Propone además una metodología para el diseño bioclimático [9].

En el 2004, Néstor Mesa y Carlos de la Rosa evalúan los problemas legales planteados por el uso y desarrollo de la energía solar en entornos urbanos. Propone establecer una legislación que garantice el libre acceso al recurso solar [10].

Erick Morales y David Morillón proponen criterios para la evaluación del impacto ambiental en ecosistemas costeros por la operación y diseño de edificios en desarrollos turísticos inmobiliarios. Tienen por objeto contribuir en la legislación contenida en la Manifestación de Impacto Ambiental de SEMARNAT [11].

En el 2005, María de Lourdes Aburto estudia al Paseo de la Reforma y lo expone como un caso de deterioro urbano. Propone que la planificación urbana debe considerar criterios de economía energética y el adecuado aprovechamiento de los recursos naturales locales [12].

Carlos Cruz, Gabriel Castañeda, Teresa Argüello, Arcadio Zebadúa y Franciso Vecchia estudian tres viviendas tipo en un fraccionamiento. Exponen cuál es la mejor según su orientación y proponen recomendaciones bioclimáticas [13].

Carl Stenitz, Jordi Barri, Modesto Bigas-Baledon, Kimberly Brigati, Patrick Curran, Renne Kaufman, Mitchel Keating, Chista Lee-Chuvala, Lorenzo Torres, Liat Margolis, Bárbara Pons, Alexander Robinson, Ellen Schneider, Byron Stigge, William Trimble, Juan Vargas, Shiau Yun Lu, Aníbal Figueroa, Gloria Castorena, Victor Fuentes, José Castro, Jorge Acosta, Claudina Arvizu, Aquiles Arreola, Valdemar Beltrán, Angélica Cervantes, Javier Cruz, Ivan Gaytán, Daniel González, Anayeli Gutiérrez, Salvador Islas, Julieta Lagarde, Diana Pérez, Bernardo Sánchez, Ingrid Santoyo, Felipe Temoltzi, Rogelio Tobón, Jorge Ugalde y Gabriel Uribe exponen un trabajo académico interdisciplinario e interinstitucional que involucra a más de cuarenta participantes de licenciatura y posgrado. El propósito fundamental es demostrar que existen posibilidades de sustentabilidad en Tepotzotlán mediante una adecuada planificación que hace énfasis en el agua, la energía, los desechos sólidos, los sistemas de transporte y los elementos

paisajísticos [14].

En el 2006, Rosalía Manríquez, Diego Morales y David Morillón proponen un desarrollo sustentable para el caso del municipio de Tecozautla, Hidalgo. El objetivo principal es desarrollar una Normatividad Bioclimática. Se presenta una investigación bibliográfica en torno al urbanismo sustentable [15].

Mariela Arboit, Néstor Mesa y Carlos de la Rosa profundizan en el conocimiento de las variables urbanas que intervienen en la potencialidad solar en entornos urbanos, considerando indicadores como: forma y orientación de las manzanas, ancho de calles, incidencia del arbolado urbano, dimensiones de lotes típicos, ocupación del suelo y altura de la edificación [16].

José Ramírez y Jesús Cuevas muestran la ciudad de Tlacotalpan, Veracruz como un ejemplo de arquitectura vernácula bioclimática: la orientación de sus manzanas, los callejones en el oriente y poniente, la doble altura, la ventilación cruzada, los patios centrales y la exuberante vegetación [17].

Ruskin Freitas expone los climas urbanos como condiciones ambientales intraurbanas, en las que se aprecia un clima diferente al resto de la ciudad (en este caso Recife, Brasil), debido a factores como la vegetación, la tierra permeable o las construcciones de baja densidad [18].

En el 2007, Mariela Arboit, Alejandro Mesa y Carlos de la Rosa presentan una metodología que permite inferir el potencial solar y los requerimientos energéticos para la calefacción de espacios de entornos urbanos, en base al análisis de sus características morfológicas. Se procesó una muestra de 32 manzanas urbanas en la ciudad de Mendoza, Argentina [19].

Leticia Peña presenta el análisis realizado al diseño urbano de un fraccionamiento, aplicando los indicadores de The Leadership in Energy Environmental Design for Neighborhood Developments (LEED-ND). Este método permite evaluar las fortalezas y debilidades de un proyecto y adecuarlo a los estándares internacionales [20].

En el 2008, Leticia Peña y Judith Hernández proponen diferentes estrategias para el desarrollo sustentable de la Ciudad de Juárez, Chihuahua, por medio de un modelo para el desarrollo local que integre las nuevas zonas de crecimiento con el resto de la ciudad, y que respondan a las necesidades en el corto, mediano y largo plazo. Las estrategias que se plantean son: nuevos esquemas de movilidad interurbana, equipamiento sociocultural y alternativas viables para la conservación ecológica y preservación del medio ambiente [21].

Andrés Andrade y David Morillón presentan un diagnóstico térmico-energético de diferentes prototipos de vivienda de interés social (básica, social y económica); las cuales son analizadas a partir de las ganancias de calor a través de la

envolvente de cada una de ellas contra su respectiva referencia, para las condiciones de los diversos bioclimas de México. Los cálculos de transferencia de calor se hacen mediante métodos numéricos. Se presentan tablas del número de viviendas construidas en México desde el 2000 [22].

En el 2009, Elvira Martínez y Diego Morales presentan distintos conjuntos habitacionales desarrollados desde 1980 en los que se han utilizado tecnologías ecológicas. Exponen que en estos desarrollos no se ha dado un buen uso a las ecotecnias o se han dejado de utilizar. Se concluye que es de vital importancia concientizar a los usuarios para que se adapten a los proyectos y así se puedan lograr resultados reales [23].

Leticia Peña y Judith Hernández plantean algunas estrategias bioclimáticas (pasivas y activas) para lograr una eficiencia en los ambientes exteriores urbanos, que sean factibles de construir y de bajo costo, viables para el desierto y semidesierto chihuahuense. Las propuestas van desde instalaciones de equipamiento urbano, tratamientos de pisos e implantación de nichos vegetales hasta captadores solares y pluviales [24].

María Pérez, Carmen García y Maritza de Coss presentan un estudio de factibilidad de aplicación del programa de Hipotecas Verdes a la vivienda económica del Estado de Yucatán. Concluyen que el diseño bioclimático de la vivienda, en este caso, mejora el confort térmico pero no proporciona un ahorro de energía considerable [25].

Ana Velasco describe los modelos actuales más frecuentes de vivienda de interés social en Morelia, Michoacán. Se realiza un análisis de habitabilidad en términos de confort. Expone la necesidad de mejorar las condiciones actuales en la vivienda, tomando en cuenta que aunque el costo de construir una vivienda sustentable es 20 % mayor, éste se absorbe en menos de 4 años [26].

Andrea Moreno, Tanya Moreno y Augusto Sánchez exponen la ciudad de Deajeon, ubicada en la parte central de Korea del Sur. En esta ciudad el gobierno trabaja para que los ciudadanos tengan una vida más feliz y más sana. Sus estrategias principales son: construir infraestructura que se adapte al cambio climático, crear una ciudad verde y ecológica, convertir desperdicios en fuentes energéticas, promover nuevas fuentes de energía renovable, crear una sociedad de bajo consumo de energía y promover el uso de bicicletas y transporte colectivo ecológico (como el tren de levitación magnética) [27].

En el 2010, Leticia Peña lleva a cabo un análisis del sitio en donde se construirán 50 casas para Tarahumaras en Cuauhtémoc, Chihuahua. Esto es parte de un proyecto en el cual ya se han construido las primeras 50 casas bajo un concepto cerrado de lotificación (con iglesia al centro). Se evalúa topgrafía y

orientación, entre otras cosas, para elaborar propuestas [28].

Ikuo Kusuhara analiza la presencia de áreas verdes de 509 localidades mediante vista satelital. Encuentra que las zonas tropicales tienden a conservar las áreas verdes en medio de las manzanas, mientras en el clima seco y semiseco se llenan las manzanas sin dejar espacio para vegetación. Se propone considerar esto para proyectos de urbanismo [29].

David Ávila analiza las circunstancias actuales de la aplicación de las normativas vigentes y su relación con las condiciones de sustentabilidad del entorno específico del occidente de México, con la finalidad de desarrollar criterios e indicadores de habitabilidad [30].

Silvia Arias pretende promover la implementación de los conceptos y criterios de sustentabilidad en las actividades relacionadas con la edificación para la zona occidente de México [31].

Patricia Cuevas, Victor Fuentes y Manuel Ochoa destacan la importancia de la vegetación a nivel urbano y los beneficios que puede traer a los habitantes. Presenta un resumen de lo que ocurre en las ciudades densas y las consecuencias de no planificar el uso de la vegetación dentro del crecimiento ubano [32].

Estos mismos autores describen la situación actual de la ciudad de Panamá en cuanto a urbanismo y cómo afecta a sus habitantes, con la finalidad de hacer recomendaciones de diseño bioclimático para que las edificaciones sean adecuadas al clima cálido-húmedo [33].

Erica Correa, Angélica Ruiz y Alicia Cantón analizan cómo el confort térmico es afectado por la modificación de determinadas variables relacionadas con la morfología edilicio-forestal, las propiedades térmicas de los materiales y las caraterísticas forestales [34].

- [1] Claudia Mercedes [Arquitectura Bioclimática Santo Domingo] and David Morillón [II-UNAM]. Recomendaciones bioclimáticas y validación de las mismas para el diseño urbano y arquitectónico de la ciudad de Santo Domingo, República Dominicana. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 55–59, 2001.
- [2] Gabriela Ávila [U.P. de Cataluña] and Diego Morales [FA-UNAM]. La repercusión del aire acondicionado en el ambiente urbano. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 133–137, 2001.

- [3] Néstor Mesa and Carlos de la Rosa [CRICYT]. La eficiencia energética de la edilicia urbana en el área metropolitana de Mendoza, Argentina. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 51–55, 2002.
- [4] Emigdo Suárez [Centro de Estudios de Construcción y Arquitectura Tropical / Instituto Pedagógico J. A. Echeverría] and Tamara Herrera [CECAT / Centro de Referencia para la Prevención y Mitigación de Desastres]. Algunas recomendaciones para mitigar los desastres sobre las viviendas económicas en cuba. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 73–78, 2002.
- [5] Pedro Chargoy [I.T. de Chetumal] and Elsa Chargoy [UQROO]. Prototipo urbano de vivienda de interés social para un sistema subtropical húmedo. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 93–97, 2002.
- [6] Roberto García and Silvia Morales [UAM]. Criterios de sustentabilidad en los patrones de consumo de agua y energía en edificios educativos de nivel básico. Memoria de la XXVI Semana Nacional de Energía Solar, pages 99–105, 2002.
- [7] Anabel Negrete, Alicia Martínez, and Laura Candelas [FA-UNAM]. Estrategias bioclimáticas que apoyan el actual plan de desarrollo urbanoarquitectónico sustentable del estado de Querétaro. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 107–112, 2002.
- [8] Néstor Mesa [CRICYT] and David Morillón [II-UNAM]. El acceso al sol, como base para la planificación urbana. Caso Área Metropolitana de Mendoza, Argentina. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 83–88, 2003.
- [9] Martha Canales [CIE-UNAM]. Recomendaciones bioclimáticas para el diseño urbano y arquitectónico en la ciudad de Pachuca, Hidalgo. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 129–134, 2003.
- [10] Néstor Mesa and Carlos de Rosa [CRICYT]. Análisis de la factibilidad jurídica de la implementación de normativas que aseguren el libre acceso al recurso solar, en entornos urbanos. Caso: Mendoza, Argentina. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 91–94, 2004.
- [11] Erick Morales [FA-UNAM] and David Morillón [II-UNAM]. Criterios para la evaluación del impacto ambiental de edificios: en el contexto turístico de

- México. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 427–430, 2004.
- [12] María de Lourdes Aburto [UAM]. Percepción y cognición del urbanismo bioclimático. una alternativa de expresividad del paisaje urbano en la ciudad de México, caso de estudio paseo de la reforma, zona histórica. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 39–44, 2005.
- [13] Carlos Cruz, Gabriel Castañeda, Teresa Argüello, Arcadio Zebadúa [UACH], and Francisco Vecchia [Escuela de Ingeniería de USP]. Evaluación del comportamiento térmico en la vivienda tipo, según su orientación en el fracc. San José Yeguiste, Tuxtla Gutiérrez, Chiapas. Memoria de la XXIX Semana Nacional de Energía Solar, pages 45–48, 2005.
- [14] Carl Stenitz, Jordi Barri, Modesto Bigas-Baledon, Kimberly Brigati, Patrick Curran, Renne Kaufman, Mitchel Keating, Chista Lee-Chuvala, Lorenzo Torres, Liat Margolis, Bárbara Pons, Alexander Robinson, Ellen Schneider, Byron Stigge, William Trimble, Juan Vargas, Shiau Yun Lu, [Harvard University] Aníbal Figueroa, Gloria Castorena, Victor Fuentes, José Castro, Jorge Acosta, Claudina Arvizu, Aquiles Arreola, Valdemar Beltrán, Angélica Cervantes, Javier Cruz, Ivan Gaytán, Daniel González, Anayeli Gutiérrez, Salvador Islas, Julieta Lagarde, Diana Pérez, Bernardo Sánchez, Ingrid Santoyo, Felipe Temoltzi, Rogelio Tobón, Jorge Ugalde, and Gabriel Uribe [UAM]. Didáctica de la arquitectura bioclimática y el diseño sustentable: La experiencia Harvard-UAM. Memoria de la XXIX Semana Nacional de Energía Solar, pages 67–72, 2005.
- [15] Rosalía Manríquez, Diego Morales, and David Morillón [FA-UNAM]. Propuesta conceptual del desarrollo de metodología para determinar los impactos edificación-entorno en climas templado seco. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 47–52, 2006.
- [16] Mariela Arboit, Néstor Mesa, and Carlos de Rosa [CRICYT]. Evaluación de la morfología urbana tendiente a maximizar la eficiencia energética. Estudio de entornos de baja densidad del área metropolitana de Mendoza. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 139–144, 2006.
- [17] José Ramírez and Jesús Cuevas [U. de Cristóbal Colón]. Arquitectura vernácula de la ciudad de Tlacotalpan, Veracruz, Méx (ecología e impacto

- ambiental). Memoria de la XXX Semana Nacional de Energía Solar, pages 171–176, 2006.
- [18] Ruskin Freitas [U. Federal de Pernambuco]. Urban climates in the city of recife. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 259–264, 2006.
- [19] Mariela Arboit, Alejandro Mesa, and Carlos de Rosa [CRICYT]. Convalidación de un modelo estadístico para determinar el potencial de acceso al recurso solar en medios urbanos de baja densidad. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–03, 2007.
- [20] Leticia Peña [UACJ]. Análisis de la eficiencia en la aplicación de indicadores LEED-ND, en la zona árida del norte de México. Caso de estudio: parajes del sur, Ciudad Juárez, Chihuahua. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–14, 2007.
- [21] Leticia Peña and Judith Hernández [UACJ]. Estrategias de desarrollo sustentable en nuevas zonas de crecimiento en Ciudad Juárez, Chih. Movilidad, servicios educativos, administrativos y medio ambiente. *Memoria de la XX-XII Semana Nacional de Energía Solar*, pages ABC–03, 2008.
- [22] Andrés Andrade and David Morillón [II-UNAM]. Diagnóstico del comporamiento térmico, energético y ambiental de la vivienda de interés social en México: retrospectiva y prospectiva (2000-2012). *Memoria de la XXXII Semana Nacional de Energía Solar*, 2008.
- [23] Elvira Martínez and Diego Morales [FA-UNAM]. Optimización de ecotecnias utilizadas en conjuntos habitacionales de la Ciudad de México: una forma de distribuir el uso de ecotecnias. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–17, 2009.
- [24] Leticia Peña and Judith Hernández [UACJ]. Sistemas activos y pasivos para el diseño urbano bioclimático para las zonas áridas. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–28, 2009.
- [25] María Pérez, Carmen García, and Maritza de Coss [UADY]. Hipotecas verdes en la vivienda económica de clima cálido húmedo. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-43, 2009.

- [26] Ana Velasco [UMICH]. Vivienda de interés social, habitabilidad extraviada. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC–53, 2009.
- [27] Andrea Moreno [IDENAP], Tanya Moreno, and Augusto Sánchez [II-UNAM]. International experiences of a sustainable city: Daejeon, South Korea. *Memoria de la XXXIII Semana Nacional de Energía Solar*, pages ABC-62, 2009.
- [28] Leticia Peña [UACJ]. Evaluación urbana y análisis bioclimático en la colonia Tarahumara en Cuauhtémoc, Chihuahua, México. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–06, 2010.
- [29] Ikuo Kusuhara [Instituto de Geografía-UNAM]. Área verde central en manzanas de localidades tropicales. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–28, 2010.
- [30] David Ávila [UDG]. Criterios urbanos sustentables para el confort bioclimático habitacional. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-35, 2010.
- [31] Silvia Arias [UDG]. Criterios de sustentabilidad para el desarrollo de vivienda bioclimática en Guadalajara. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–36, 2010.
- [32] Patricia Cuevas, Victor Fuentes [UAM], and Manuel Ochoa [UNISON]. Importancia de la vegetación a nivel urbano. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-41, 2010.
- [33] Patricia Cuevas, Victor Fuentes [UAM], and Manuel Ochoa [UNISON]. Recomendaciones de diseño bioclimático para la ciudad de Panamá. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–42, 2010.
- [34] Érica Correa, Angélica Ruiz, and Alicia Cantón [INCIHUSA-CONICET]. Estrategias de mitigación de la isla de calor urbana. Impacto sobre las condiciones de confort de los espacios abiertos en ciudades de clima semidesértico. Memoria de la XXXIV Semana Nacional de Energía Solar, pages ABC-58, 2010.

16. Normatividad

En este capítulo se incluyen los trabajos que hablan sobre las distintas normatividades y regulaciones dirigidas hacia el uso eficiente de los recursos en las construcciones y a lo largo de la vida útil de éstas.

Se han presentado 18 artículos en los congresos de la ANES, del 2000 al 2010. Los grupos que han presentado más de un artículo son el Instituto de Ingeniería de la UNAM, con David Morillón (3 publicaciones); la Universidad Autónoma de Baja California, con Ricardo Gallegos (2); y el Centro Regional de Investigaciones en Ciencia y Tecnología (Argentina), con Carlos de la Rosa (2).

En el 2001, Verónica Huerta, Christopher Heard y Aníbal Figueroa analizan el anteproyecto de la norma NOM-020-ENER con la finalidad de verificar su aplicación en edificios residenciales [1].

Roberto García y Miguel Tirado proponen establecer una normatividad en la construcción que considere el manejo adecuado de los recursos naturales, así como el ahorro y uso eficiente de la energía, y la integración de tecnologías alternativas en los diversos géneros de edificios [2].

En el 2003, Ramona Romero, Ricardo Gallegos, Gonzalo Bojórquez y Arelí López analizan tres edificios (dos de la UABC y un supermercado). Se observa que cumplen la NOM-008-ENER-2001, pero que están generando una problemática energética, por lo que se sugieren algunas recomendaciones necesarias para la aplicación de la NOM-008 en las zonas áridas del país [3].

Martha Canales y David Morillón analizan cuatro proyectos de vivienda de interés social seleccionados como representativos. Sólo uno de los proyectos cumplió con el anteproyecto de la NOM-020-ENER. Se proponen estrategias como control solar, cambio de orientación y mejorar las propiedades de los materiales [4].

En el 2004, Eduardo Vázquez, Aníbal Luna y Manuel Ochoa proponen un análisis sistematizado de ventanas considerando las variables sol, luz y viento, con el fin de lograr un diseño adecuado. Uno de los objetivos es que este estudio se tome en cuenta en el Reglamento de Edificaciones de Mexicali, Baja California [5].

Néstor Mesa y Carlos de la Rosa evalúan los problemas legales planteados por el uso y desarrollo de la energía solar en entornos urbanos. Proponen establecer una lesgislación que garantice el libre acceso al recurso solar [6].

Ignacio Martín y Teresa Alarcón describen las metodologías que a lo largo de las últimas cuatro décadas se han desarrollado para la estimación de las cargas térmicas en edificaciones. Se dan recomendaciones sobre la pertinencia de su utilización para fines de la NOM-008-ENER-2001 [7].

Erick Morales y David Morillón proponen criterios para la evaluación del impacto ambiental en ecosistemas costeros por la operación y diseño de edificios en desarrollos turísticos inmobiliarios. Tienen por objeto contribuir en la legislación contenida en la Manifestación de Impacto Ambiental de SEMARNAT [8].

Adalberto Tejeda, Irving Méndez, Alberto Utrera y Luis Rodríguez presentan un procedimiento para establecer las tarifas eléctricas domésticas en la región de estudio, tomando en cuenta la temperatura efectiva (la temperatura representativa de la sensación térmica) [9].

Odón de Buen describe las razones y relata el proceso que antecedió a la NOM-008-ENER-2001: Eficiencia energética en edificaciones, envolvente de edificios no residenciales [10].

En el 2006, Rosalía Manríquez, Diego Morales y David Morillón proponen un desarrollo sustentable para el caso del municipio de Tecozautla, Hidalgo. El objetivo principal es desarrollar una Normatividad Bioclimática. Se presenta una investigación bibliográfica en torno al urbanismo sustentable [11].

En el 2008, Alejandro Mesa, Mariela Arboit y Carlos de la Rosa analizan distintas herramientas de gestión existentes, promulgadas a nivel regional (Mendoza, Argentina), evaluando los requerimientos normativos necesarios en cada caso, para preservar la disponibilidad de los recursos y por ende la eficiencia energética de los sistemas [12].

David Avila y Silvia Airas proponen una serie de apartados ambientales en vías de elaborar una normativa de la edificación en la región occidente de México. Tratan principalmente las cuestiones de eficiencia lumínica [13].

Argelia Crisóstomo e Inocente Bojórquez aplican la NOM-008-ENER-2001 a la remodelación de una clínica dental en Chetumal, Quintana Roo. con la finalidad de conocer si los datos climáticos proporcionados por la norma son adecuados para esta ciudad. Se concluye que el uso de la norma no es totalmente adecuado y se encuentra limitada en cuanto a datos de materiales, ángulos de protecciones solares, temperaturas internas y externas, orientaciones, etc. [14].

En el 2009, Roberto Calderón, Ricardo Gallegos y Fernando Mayagoitia evalúan el efecto que tiene sobre el consumo eléctrico y los espesores de aislante, la aplicación de cada una de las normas de eficiencia energética en México (NOM-020-ENER, CEV3, NMX-C-460). Se estimó el costó de aplicar cada una de las normas [15].

En el 2010, David Ávila analiza las circunstancias actuales de la aplicación de las normativas vigentes y su relación con las condiciones de sustentabilidad del entorno específico del occidente de México, con la finalidad de desarrollar

criterios e indicadores de habitabilidad [16].

Silvia García, Victor Fuentes y Silvia de Schiller muestran la situación actual de las certificaciones de edificios sustentables en la Ciudad de México, y hacen una comparativa entre las normatividades y/o regulaciones con las que actualmente se cuenta, siguiendo la metodología de criterios sustentables que plantea LEED [17].

Jesús Pérez, Rafael Cabanillas, Fernando Hinojosa y Ana Borbón realizan un estudio comparativo de la NMX-C-460-ONNCCE-2009 en cuanto a la resistencia térmica que establece, contra una norma europea (UNE EN-ISO 6946). Los cálculos se efectúan aplicando el método de diferencias finitas. Se concluye que la norma mexicana sobreestima el valor de R del techo ya que se basa en un modelo unidireccional [18].

- [1] Verónica Huerta, Aníbal Figueroa [UAM], and Christopher Heard [IMP]. Análisis del anteproyecto de la norma 020, sobre eficiencia energética en edificaciones y su relación con el diseño térmico de la envolvente de edificios residenciales hasta de tres niveles. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 1–6, 2001.
- [2] Roberto García and Miguel Tirado [UAM]. Normatividad en las edificaciones orientadas a promover el desarrollo sustentable en la arquitectura. *Memoria de la XXV Semana Nacional de Energía Solar*, pages 127–132, 2001.
- [3] Ramona Romero, Ricardo Gallegos, Gonzalo Bojórquez, and Areli López [UABC]. Aplicación de la NOM-008-ENER-2001 en zonas áridas de México: el caso Mexicali. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 19–24, 2003.
- [4] Martha Canales [CIE-UNAM] and David Morillón [II-UNAM]. Evaluación bioclimática de la vivienda de interés social: Caso Pachuca, Hidalgo. *Memoria de la XXVII Semana Nacional de Energía Solar*, pages 105–109, 2003.
- [5] Eduardo Vázquez, Aníbal Luna [UABC], and Manuel Ochoa [UNISON]. Estudio de aislamiento de ventanas en edificaciones de uso habitacional en Mexicali. Bases técnicas para la revisión del Reglamento Municipal de Edificaciones. Parte I. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 43–47, 2004.

- [6] Néstor Mesa and Carlos de Rosa [CRICYT]. Análisis de la factibilidad jurídica de la implementación de normativas que aseguren el libre acceso al recurso solar, en entornos urbanos. Caso: Mendoza, Argentina. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 91–94, 2004.
- [7] Ignacio Martín and Teresa Alarcón [CIMAV]. Evolución de las metodologías para el cálculo de cargas térmicas en edificaciones, desarrolladas por la ASHRAE. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 113–116, 2004.
- [8] Erick Morales [FA-UNAM] and David Morillón [II-UNAM]. Criterios para la evaluación del impacto ambiental de edificios: en el contexto turístico de México. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 427–430, 2004.
- [9] Adalberto Tejeda [UV], Irving Méndez, Alberto Utrera, and Luis Rodríguez [UNAM]. Aplicación de un índice bioclimático a las tarifas eléctricas domésticas en el Oriente de México. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 435–441, 2004.
- [10] Odón de Buen [Energía Tecnología y Educación SC]. Historia de la NOM-008-ENER-2001. Memoria de la XXVIII Semana Nacional de Energía Solar, pages 447–451, 2004.
- [11] Rosalía Manríquez, Diego Morales, and David Morillón [FA-UNAM]. Propuesta conceptual del desarrollo de metodología para determinar los impactos edificación-entorno en climas templado seco. Memoria de la XXX Semana Nacional de Energía Solar, pages 47–52, 2006.
- [12] Alejandro Mesa, Mariela Arboit, and Carlos de Rosa [CRICYT]. La conservación, el aprovechamiento del potencial bioclimático y los programas de eficiencia energética como estrategia hacia la sustentabilidad urbana, en países sudamericanos. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-06, 2008.
- [13] David Ávila and Silvia Arias [UDG]. Códigos de edificación para el desarrollo de la vivienda sustentable. Memoria de la XXXII Semana Nacional de Energía Solar, pages ABC-21, 2008.
- [14] Argelia Crisóstomo and Inocente Bojórquez [UQROO]. Un ejemplo de aplicación de la norma de eficiencia energética en edificaciones, envolvente de

- los edificios no residenciales, NOM-008-ENER-2001. *Memoria de la XXXII Semana Nacional de Energía Solar*, pages ABC-27, 2008.
- [15] Roberto Calderón, Ricardo Gallegos [FA-UNAM], and Fernando Mayagoitia [Lean House]. Determinación de línea base para consumo eléctrico, en la vivienda económica de Mexicali, según las normas de eficiencia energética mexicanas. *Memoria de la XXXIII Semana Nacional de Energía Solar*, 2009.
- [16] David Ávila [UDG]. Criterios urbanos sustentables para el confort bioclimático habitacional. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-35, 2010.
- [17] Silvia García, Victor Fuentes [UAM], and Silvia de Schiller [U. de Buenos Aires]. Situación en México sobre la certificación de la edificación sustentable. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC–37, 2010.
- [18] Jesús Pérez, Rafael Cabanillas, Fernando Hinojosa, and Ana Borbón [UNI-SON]. Comparación de la resistencia térmica de un sistema constructivo con la NMX-C-460-ONNCCE-2009 y otros métodos. *Memoria de la XXXIV Semana Nacional de Energía Solar*, pages ABC-72, 2010.

17. Programas de estudio relacionado

En este apartado se incluyen los artículos que tratan sobre programas de estudio relacionados con la energía en las edificaciones.

Se han presentado 5 publicaciones relativas a este tema en los congresos de la ANES, del 2000 al 2010.

En el 2002, Guillermo De la Paz propone un procedimiento metodológico complementario (lista de chequeo bioclimático) para la formación del arquitecto en la disciplina del Acondicionamiento Ambiental [1].

En el 2004, Manuel Ochoa describe brevemente el laboratorio de energía, medioambiente y arquitectura de la Unison: sus antecedentes, motivos, equipamiento y espacios físicos. Asimismo se muestran algunas experiencias obtenidas de las primeras asignaturas y talleres impartidos en el laboratorio [2].

En el 2005, Ricardo Aguayo expone los lineamientos de la materia de Sistemas Pasivos impartida en el cuarto semestre de la carrera de arquitectura del ITESM, Campus Cd. de México. Concluye definiendo, desde su punto de vista, la mejor forma para enseñar arquitectura bioclimática [3].

En el 2006, Carlos Romo expone la importancia de la energía solar. Propone su integración en la arquitectura y su enseñanza en los programas de estudio de esta disciplina [4].

En el 2007, Gabriel Castañeda, Luis Jiménez, Mario Yáñez y María de Lourdes Carpy exponen el seminario de titulación para arquitectos de la UNACH: Tecnologías alternativas para la edificación, como un curso de capacitación en este tema orientado a la vivienda y dividido en la teoría, la práctica y la aplicación [5].

- [1] Guillermo De la Paz [U. de Camagüey]. Protección solar vs. sentido común en la arquitectura cubana: propuestas para la formación del arquitecto. *Memoria de la XXVI Semana Nacional de Energía Solar*, pages 161–165, 2002.
- [2] Manuel Ochoa and Irene Marincic [UNISON]. De la teoría a la práctica: Laboratorio de energía, medioambiente y arquitectura de la Universidad de Sonora. *Memoria de la XXVIII Semana Nacional de Energía Solar*, pages 123–127, 2004.

- [3] Ricardo Aguayo [ITESM]. Análisis de la estructura didáctico/pedagógica del curso de arquitectura bioclimática impartido en el Tecnológico de Monterrey, Campus Ciudad de México. *Memoria de la XXIX Semana Nacional de Energía Solar*, pages 15–20, 2005.
- [4] Carlos Romo [FA-UNAM]. Arquitectura solar en México. *Memoria de la XXX Semana Nacional de Energía Solar*, pages 29–32, 2006.
- [5] Gabriel Castañeda, Luis Jiménez, Mario Yáñez, and María de Lourdes Carpy [UACH]. Tecnologías alternativas para la edificación: Seminarios de titulación para arquitectos de la UNACH. *Memoria de la XXXI Semana Nacional de Energía Solar*, pages ABC–35, 2007.

18. Conclusiones

En este trabajo se analizaron 423 publicaciones pertenecientes a las memorias de la ANES del 2000 al 2010. Estas publicaciones se dividieron en 15 capítulos dependiendo del tema que tratan. Algunos artículos están relacionados con más de un tema por lo que se clasificaron en más de un capítulo.

Los temas con más publicaciones son el de Diseño bioclimático integral (98 publicaciones), seguido por el de Desempeño térmico de materiales (71) y el de Transferencia de calor en edificaciones (56). Los temas con menos publicaciones son el de Programas de estudio relacionados (5), el de Estudios básicos (7) y el de Autogeneración integrada (8). En la Figura 1 se puede ver el número de publicaciones por cada uno de los 15 temas.

Por otro lado, los grupos de investigación con más publicaciones son la Universidad Autónoma Metropolitana (95), el Instituto de Ingeniería de la UNAM (63), la Universidad de Sonora (48), la Universidad Autónoma de Baja California (48) y la Facultad de Arquitectura de la UNAM (41). En la Figura 2 se puede ver el número de publicaciones por grupo de investigación. En la gráfica solamente se incluyen los grupos de investigación que tienen más de 10 publicaciones.

El Centro de Investigación en Energía-UNAM presenta un total de 17 publicaciones en el periodo analizado. El grupo de investigación de energía en edificaciones formado en este instituto presenta 6 artículos en los dos últimos años.

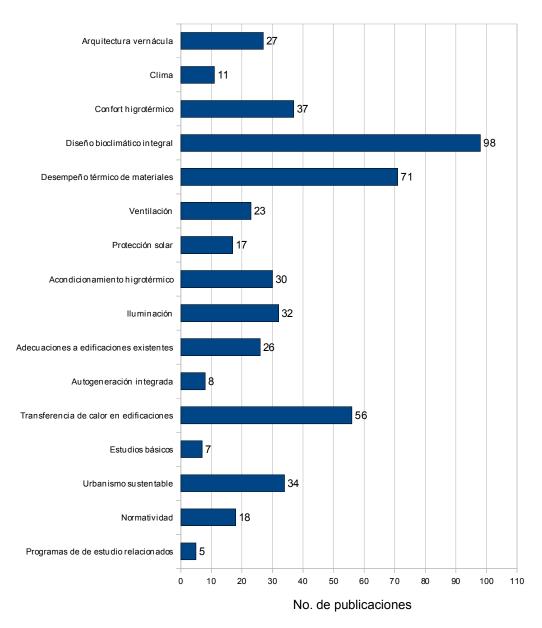


Figura 1: Número de publicaciones por tema

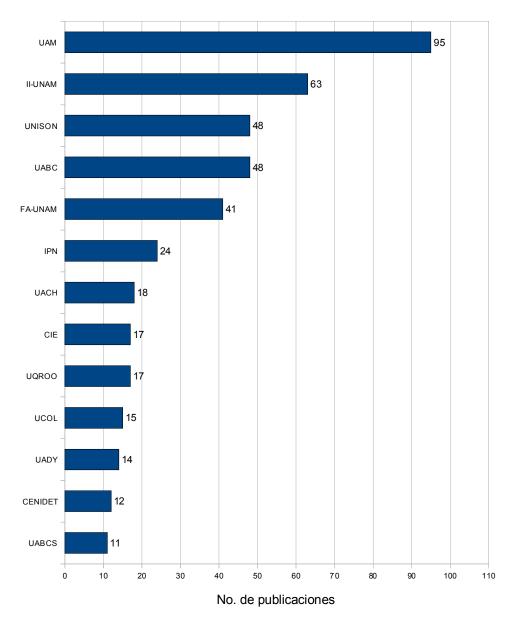


Figura 2: Número de publicaciones por grupo de investigación